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ABSTRACT

As an alternative to the LU matrix factorization, we consider a factoriza-

tion that uses the lower triangular part of the original matrix as one factor and

computes the other factors as a product of rank-one update matrices.

Under some non-singularity assumptions, an m xm matrix A can be factorized

as EmE,,,-i ... E 2A1 where A1 is the lower triangular part of A and Ek is a rank-

one update matrix of the form I + vkWk with Vk a column vector and Wk a row

vector. The vector Vk is the kih column of A - A 1 . If vk = 0, then Ek = I may be

omitted from the factorization. Otherwise, the row vector Wk must be computed.

After reviewing and improving the time complexity, the requirements, the

stability and the efficiency of this method, we derive a stable factorization algo-

rithm which we implement in FORTRAN77 within the framework of the simplex

algorithm for linear programming.

A comparison of our numerical results with those obtained through the code

MINOS 5.3 indicate that our method may be more efficient than an ordinary

LU decomposition for some matrices whose order ranges between 28 and 1481,

especially when these matrices are almost triangular.
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INTRODUCTION

The most widely used matrix factorization, the LU factorization, amounts

to the computation of two triangular factors, one of which can be regarded as

a product of rank-one update matrices. As an alternative, George B. Dantzig

(1985) has proposed another factorization that uses the lower triangular part of

the original matrix as one factor and computes the other factor as a product of

rank-one update matrices.

Under some non-singularity assumptions, an m x m matrix A can be factorized

as EE,,-I ... E 2A1 where A1 is the lower triangular part -f A and Ek is a rank-

one update matrix of the form I + vkWk with Vk a column vector and Wk a row

vector.

The vector vk is the kth column of A - A1 . If vk = 0, then Ek = I may be

omitted from the factorization. Otherwise, the row vector Wk defining Ek can be

obtained by solving WkEk- 1 ... E2A1 = u T where u T is the kth unit row vector.

Once the auxiliary vectors Wk have been computed, any system Ax = b or

7rA = -y can be solved through one sparse triangular system involving A1 and

s rank-one updates involving the matrices Ek for which column k is a spike (i.e.

vk #0).

However, that factorization may break down, for instance on a matrix whose

diagonal contains a zero element. In addition, even if the factorization exists, it

will often be unstable. In this thesis, we show how to overcome the problems of

existence and stability. We present a factorization method theoretically applicable

to any non-singular matrix. The numerical results presented in the last chapter

indicate that our method may be more efficient than an ordinary LU factorization

for some matrices whose order ranges from 28 to 1481, and whose number of

elements ranges from 72 to 6344.

In Chapter 1, we indicate how to compute the vectors Wk recursively, and

how to solve systems such as Ax = b and 7rA = -y using these vectors, assuming
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the non-singularity of A and of some of its submatrices.

In Chapter 2, we streamline the method described in Chapter 1 and reduce

its computational complexity to the same level as that of the LU factorization.

In Chapter 3, we study the existence and the stability of the factorization.

We introduce the vectors 17k (2 < k < m), a normalized form of the vectors

Wok (2 < k < m). If A is non-singular, a permutation Q of the columns of A

makes AQ and its leading principal submatrices non-singular and, in practice,

well conditioned. We indicate how to compute simultaneously the permutation Q

and the vectors Ir k representing the factorization of AQ.

In Chapter 4, we present some algorithms inspired by Hellerman and Rarick

(1971), that permute the rows and columns of A in order to reduce the number

of spikes (i.e. the columns that have nonzero entries above the diagonal). The

method is more efficient if there are fewer spikes and if the spikes are shifted

towards the left because wak has at most k nonzero components.

In Chapter 5, we propose an algorithm that reorders the rows and columns of

A while computing the vectors ofk, so as to reduce the number of spikes without

compromising the numerical stability of the factorization.

In Chapter 6, we describe a FORTRAN implementation of the algorithm

within the framework of linear programming. We use our own set of factorization

routines in the optimization code MINOS 5.3 of Murtagh and Saunders (1987) on

a set of 51 test problems from netlib (Gay, 1985). With the options chosen, our

method achieves faster running times than the original MINOS code on about a

third of the problems. Unfortunately, it also takes up to four times as long as

MINOS on some problems.
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CHAPTER 1. THE BASIC METHOD

1.1 Introduction

Under some non-singularity assumptions, an mf x m matrix A can be factorized

into EmE,m-i ... E 2A, where A, is the lower triangular part of A and Ek is a

rank-one update matrix of the form I + VkWk with Vk a column vector and wk a

row vector.

The vector vk is the kt h column of A - A1 . If vk = 0, then Ek = I may be

omitted from the factorization. Otherwise, the row vector Wk must be computed.

In this Chapter, we describe the factorization and provide a natural method

to compute the vectors Wk (2 < k < m) and to solve systems such as Ax = b or

7rA = -y using this factorization.

1.2 Definitions and Notation

Let m be a positive integer. Let R denote the real numbers. Unless otherwise

specified, matrix denotes an element of R r
Xm, column vector denotes an element

of R ' l and row vector denotes an element of R × ' . Row vectors are usually

represented by Greek letters.

A given matrix A can be decomposed into its lower triangular part A1 (in-

cluding the diagonal) and its strictly upper triangular part, which can in turn be

broken down according to its entries in columns 2, ... , m into m - 1 matrices of

the form v&u T for 2 < k < m, where uk is the kth unit vector. Then

TT-- A, -+ v2u2 -+ V3u3 + - + VMu m .

For2< k <m, let

Ak Ak-1 + Vkuk

=Al + v 2 u T + .. + VkUk.

If Vk $ 0, column k is called a spike of A.
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Example: The following 3 x 3 matrix A has two spikes, namely columns 2

and 3. We use th ymbol * to denote coefficients that are identically zero.

(8 1 6)
A=(3 5

4 9 2

(8 * ** ) + *+* 6

4 9 *2*(* *

A, 3 5 V2 = u2 =(,1,
(4 9 2
8 1 *

81 6)
A3 3 5 7

(4 92

In this chapter, we assume that the matrices Ak (1 < k < m) are non-

singular (cf. Chapter 3). We can then turn the above decomposition of A into a

factorization. For 2 < k < m, let

Ek ! I +- VkWL,

Then

Ak = Ak-1 + VkU T

= (I + VkU TAkl) Ak.1

= (I + Vk(Jk) Ak-i

= EkEk-l ... E2AI

and in particular, A = EmEm,-, ... E 2A1 . Each matrix Ek is a rank-one update

matrix. Note that we could also have factored A, on the left and obtained a

factorization of the form A 1F 2 ... Fk-lFk where each matrix Fk is also a rank-

one update matrix.

4
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1.3 Solution of Rank-One Update Systems

Let E = I + vw and 9= 1 + wv. The following Lemmas are well known

properties of rank-one update matrices (Golub & Van Loan, 1983).

Lemma 1.3.1

8 = det E

E - 1 = I - 8-1vu;

Lemma 1.3.2 The solutions to the elementary linear systems Ex = b and

arE = -y are given by the following rank-one update formulas:

8=1 +wy

x= b -Z - 1 (wb) v

" =y -Y 0- 1 (IV) W

Once Lo and 9 have been computed, the number of multiplications or

divisions required in either update is at most equal to the number of nonzero

components in v, plus the number of nonzero components in w, plus one (corre-

sponding to the factor 0 -1). By construction, the vectors Vk and Wk defined in

Section 1.2 have at most k - 1 and k nonzero components respectively. Therefore,

solving the system EkX = b or 7'Ek = y requires at most 2k multiplica-

tions or divisions. The same upper bound holds for the number of additions or

subtractions.

1.4 Computation of the Factors Ek (2 < k < m)

For our purposes, knowing the factor Ek = I + VkWk through .he vec-

tors vk and Wk is sufficient. Since the vectors vk are given, we need only

compute the auxiliary vectors Wk (2 < k < m) defined by WkAk-l = uT, i.e.
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WkEk-i ... E2A1 = uT. This can be done recursively by solving the systems

w 2 A1 = u.

w3 E2 Aj = u3

LkEk-i ... E2 A1 = u T

CmEm-iEm-2... E 2 Ai =u

in that order. To solve the system WkEk-i ... E 2A1 =u T we can solve the

triangular system 7rlA 1 = u T by backward substitution and then successively

solve k - 2 rank-one update systems of the form 7riEt = 7r'-I for 2 < 1 < k - 1.

By Lemma 1.3.2, these systems are equivalent to

7rj = r--I - 8- 1 (7ri--I') WI for 2 < I < k - 1.

Once Wk = 'A;-i is known, we can obtain Ok by

Ok = 1 + WkVk.

Since the last m - k components of 7r, and its successive rank-one updates

(including Wk) are zero, all these systems are of dimension at most k for practical

purposes. The maximum number of multiplications required to compute (Wk, Gk)

by this method is

k-I3

k(k+1) + k2- + k-1 2 k +k
I----2

1=2

and the maximum number of multiplications required to factorize A is

Z(10k +k) ; : IM 3 +M 2 .2--2

Example:

Consider the 3 x 3 matrix A = 3 5 7 introduced in Section 1.2.
9
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The vector W 2 characterizing E 2 is given by W2A1 = u2.

W2 3 5 = (0 1 0)

4 9

L2 = ( -- I' *

3 1 1 3o(1(-) L74040

The vector Uw3 characterizing E3 is given by W3 E 2 A1 - uT

w 3E 2 .(3 5 = (0 0 1)
492

W 3 E2 = (- 3 9 )
,3 =(- -- To- 0 - 1

40 [0 2)_L*
L337 40 104 10 40 5

7 34 1

03 = 1 + -L 34 1 78

74 37 2 ) - 37

180

1.5 Solution of Ax = b

To solve the system Ax = b given the non-singular factorization A =

Em ... E2 A1 , the natural method is to solve successively the systems

Embm-i = bm

Ekbk-1 = bk

E 2 b1 = b2

Aix = b

... . ................ . . . . . - . l l l~m n I~l i 7



for bm-I,,-.. ,b, and x, having let bm = b. Applying Lemma 1.3.2 to the

non-singular matrices Ek (m > k > 2) , we can solve the first m - 1 systems

according to the rank-one update formulas

bk-i = bA: - 0 - 1 (wkAbk) vk for m>k>2

and then solve the triangular system Alx = bl by forward substitution.

The maximum number of multiplications required by this method is

2

2k + m(m +) m2 + Im.
k m

Example:

Consider the 3 x 3 system Ax = b where A = 5 7 and b

( 29 2

14) The system can be written E 3E2 A~x = b. The vectors b3 , b2 , b, and

x are the following:

b3= 1

b 2 4 24 60( 3

b2 = ( )[ - ( ]) =
-88

bx=(~7) ±~[+ * *)k)G)"-2;(24)=( 2 6

8

b2 14 _ I (IL II _ . 17-



1.6 Solution of 7wA =

To solve the system irA = y given the non-singular factorization A =

Em ... E 2A,, the natural method is to solve successively the systems

w1iA, = I

7r2 E 2 = Ir"

7rkEk = 7rk-1

7rmEm = rm-I

for 7rl,7r2 ,..,7r, = 7r. The triangular system 7r1A1 =y can be solved by

backward substitution. Then, applying Lemma 1.3.2 to the non-singular matrices

Ek, we can solve the last m- 1 systems according to the rank-one update formulas

7rk = 7rk-1 - 0-' (7rk-lVk) Wk for 2 < k < m.

The maximum number of multiplications required by this method is

mI 3 n2 +3Mm(m + 1) + Z2k - 2 +2
k=2

Example:

Consider the 3x3 systemrA =ywhere A= 3 5 7 and -=
(4 92

(6 0 -6 ). The system can be written 7rE 3E 2A 1 = . The vectors 7r', W2 , WF3

and w ae the following:

' 5 =(6 0 -6)

49 2

7r, 1. L -3)
9



F 5

=-- 21 -3- • 40 -(5 )] 5

37 379 -3)

7r 3 = (I. -L. .3 ) + 98_ 19833774 37 2

((1 -2 1)

7r=(1 -2 1)

1.7 Fundamental Observation

If column 1 is not a spike (i.e. if v1 = 0), then El = I may be omitted

from the factorization of A and the rank-one update corresponding to El may

be skipped when solving Ax = b, 7rA = 3 or even wkAk- = u T . This

simplification significantly reduces the size of the computations when the matrix

A is large and has few spikes.

Example:

This example shows how to factorize a 5 x 5 matrix whose columns 2 and 4

are not spikes, and how to solve systems like Ax = b or irA = y.

1 0 10 1\6o0100 i
A - 0 1 0 1 b= 6 y-(1 3 3 2 3)

0 1 1 1 00
1 1 0 1 1 8

10



0 1
A, - 1 0 1 v,) -- 0 = E2= I

1 1 0 1

A 2 = Ai

01 0O*)
A 3 =- - 1 0 1 V 4 =*E

0 1 1 1 * 0 -
1 1 0 1 1

1
A4 = A3  V

• The vector w3a characterizing E3 is given by w03 A1 -- u T.

cQa - iEE) = (0 0 1 0 0)

010 0 0

A (1 0 1

0 o "-( 1 0 1 * *

03=1+ (101 * =2

* The vector W3 characterizing E3 is given by W5 E3 A 1 = u.

1 * ***

WE 3 -1 0 1 * = (0 0 0 0 1)

0 1 1 1 1

03=I +I 0 1

11



uw.sE 3  - (0 0 1 -1 1)

U =, - (0 0 1 -1 1)- (0 0 1 -1 1)( (1 0 1 •

W- (0 0 1 -1 1)

0
05 1 + (0 0 1 -1 1) 1 -2

0

* The system Ax b can be written E5 E3Alx b. The vectors b5 , b3 , b,

and x are the following:

bs=(6)1

6
8)6i) 6 1iI ! (2)

b3- -6 (0 0 1 -1 1) 6 =(2) (2) 1!) (0)
1 -1 0 1

bI 2 1 0 122

21

6 6 6 II



* The system 7rA -y can be written 7rE 5 E 3A1 = jy. The vectors 7r,, 7r 3 ,

7's and ir are the following:

I * * *

7rl -1 0 1=(1 3 3 2 3)
0 1 11•

110 11

2r1 = (2 1 4 -1 3)

ir3 =(2 1 4 -1 3)- - (2 1 4 -1 3) 1 

-(1 1 3 -1 3)

rs (1 1 3 -1 3)- [(1 1 3 -1 3)(1 (0 0 1 -1 1)

- (1 1 1 1 1)

----(1 11 11)

13
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CHAPTER 2. THE STREAMLINED METHOD

2.1 Introduction

The basic method of Chapter 1 is not the most efficient way to compute

and use the factorization A = EmEn.i ... E 2 A1 . In this Chapter, we present

a streamlined method that yields the same results as the basic method without

explicitly solving the intermediate system involving the triangular matrix A 1 . This

decreases by about 33% the upper bound on the number of multiplications required

to compute the factorization of A, the solution of Ax = b or the solution of

7rA = y.

2.2 Solution of Ax - b

The basic method explained in Section 1.5 can be streamlined by observing

that Xk, the ktt component of x, is computed when the rank-one update system

EkbA-l = bk is solved. Consider the following Lemmas:

Lemma 2.2.1 For 2_<k<_m, uT = O1 'WkAk.

Proof ek, the determinant of Ek, is nonzero and

eo. T = (1 + W V ) u T

= .T T
Uk + WkVkUI.

= wkAk-1 " + WkVkU,'

= W (Ak-i + vkU T )

= wk Ak.

Lemma 2.2.2 For 2 <_ k < m, Ajx = bl.

14



Proof By definition of bk and Ak, we have

bk = Ekbk-l

= EkEk-lbk-2

= EkEk-i... E 2Alx

= AkX.

Lemma 2.2.3 For 2 < k <in, Xk = Okwlkbk.

Proof By Lemmas 2.2.1 and 2.2.2,
Xk = UkTX

- OklIUwkAkX

= Ok IUkbk.

Lemma 2.2.4 For 2<k<m, bk-1 = bk - xkvk.

Proof Starting with Lemma 2.2.2, we obtain

bk-i = Ak-lX

- (Ak - VkUk)X

= AkX - VkUTX

- bk - VkXk.

Lemmas 2.2.3 and 2.2.4 provide the same update formula as Section 1.5 but

they show that the components xk (m > k > 2) can be computed along with

the vectors bk-1 (m > k > 2) without additional work. By the time b, is

computed, the only component of x that remains unknown is xj. At that stage,

instead of solving the whole triangular system Aix = bl, we only need to solve

the first equation, of the form A1lx 1  = uTbl. In summary, we obtain the

following method.

Algorithm 2.2 (to solve Ax = b)

Let bm = b.

For k = m downto 2, let Xk = Oklwkbk and b- 1 = bk - Xkv k.

Let xi = A-l'uTbi.

15



This algorithm actually depends on the auxiliary vectors A 1 uT and O-'Wk

(2 < k < m) which are none other than the vectors u[A - ' (1 < k < m) (cf.

Lemma 2.2.1). The maximum number of multiplications required by this method

is 2

Z2k + 1 - m 2 +m.
k~rm

This is essentially the same as the maximum number of multiplications required

to solve a system LUx = b where L and U are triangular matrices.

Note that only the first k components of bk are needed for these computa-

tions. Therefore, for each k, we may replace bk by its projection bk onto the

subspace of R" x' generated by the first k unit vectors.

Example:

Consider the 3 x 3 system Ax = b where A 3 5 andb = 14.

We know from Section 1.4 that the factorization A - E3 E 2A1 entails the

following auxiliary quantities:
UrT=( , A-'

1- 40

,W.2 =(--L 5 2) T7._ ---)

W 3 = _L _34 1 )--37

74 37 2 3 TOO

A straightforward application of Algorithm 2.2 yields

1 3 ) X3 = - 180 7 3 (i) 3

1 (= +2 Xl = k (1 ,)(*) =1

The final result is the same as in Section 1.5:

-=2)

16



2.3 Solution of rA = y

As in Section 2.2, we can streamline the method explained in Section 1.6 and

avoid solving the complete triangular system involving A,. For 1 < k < m, define

Yk as the projection of -y onto the subspace Sk of R 1 "m generated by the first k

unit vectors. Then define Wk as the unique solution of the system WkAk =

Now, consider the following Lemmas:

Lemma 2.3.1 For 1<k<m, Wk is inSk.

Proof The last m - k equations of WkAk = Y'k constitute a full rank

triangular system with null right hand side. Its solution, a vector made of the last

m - k components of Wk, must be zero.

Lemma 2.3.2 For 2 < k < m, (Wk - Wk-1) Ak = (-Yk - rk-lVk) UT ,

where -tk is the kth component of y or, equivalently, of 5k

Proof Using essentially the definitions of 3;k and 5k-1, we obtain

WkAk = Yk

= T
= 5k-1 + kUk

T= Irk-iAk- + ^IkUk

VkT) T
= Wk-1 (Ak - vtu + Yk-uk

= Wk-lAk + (rtk - Wk-lVk) Uk.

Lemma 2.3.3 For 2 < k < m, Wk = Wk-1 + 0 -  - Wk-lVk) Wk.

Proof The matrix Ak is non-singular and we have

(k - Wk-1) Ak = (y/k - k-lVk) UT

= (^tk - k._Vk) O'wLkAk•

By Lemma 2.3.1, only the first component of W, can be nonzero. Therefore,

the system WAI = -5 can be solved in one scalar division as opposed to the

system 7r1 A1 = -y which requires a triangular matrix division. Then, Lemma

2.3.3 shows that the sequence Ik (2 < k < m) can be computed just as easily

as the sequence I'k (2 < k < m) of Section 1.5. Finally, since y = we have

7" = W,,n. In summary, we obtain the following method.

17



Algorithm 2.3 (to solve 7rA = y )

Let W, = -yi A 1 uT-

For k = 2 to m,let k= Yk -Wk-IVk and Wk = Wk-kI + G Ok UJk.

Let ir = .

Once again, this algorithm actually depends on the vectors uTA-' (1 < k <

m). The maximum number of multiplications required is

m

1 + Z-'2k ; m2 +m.
k=2

Example:

Consider the 3 x 3 system 7rA = y where A = 3 5 7 andy-
(4 92

(6 0 -6). We know from Section 1.4 that the factorization A E3 E2Aj

entails the following auxiliary quantities:
u=(i , A-,' 1

W2 =(- = 4
j=

40 52 T7-

W3(! ~ _L _4 =-374 37 2 3 T8-03

A straightforward application of Algorithm 2.3 yields

Y, = 6- (1 * *) = (2 * *)

= 0 - (I * *) = -i

2 = ( * ) 40 ( _ . ( O

6 4 3Y803737

3 3-60 7 =(1
- ,) = =-L-

3 = (30 6 ) 60 37 ( _ 34 L (1 -2 1)
37 37 37 180 74 37

The final result is the same as in Section 1.6:

= (1 -2 1).
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2.4 Computation of the Factors Ek (2 < k < m)

The system WkAk-l = UT defining Wk can be written

Wak () = (0 1 0)
B c D

where X is the (k - 1) x (k - 1) leading submatrix of A or Ak-i, and a is the kt h

diagonal element of A or Ak-. Assuming that Ak-l is non-singular, this system

is equivalent to

Wk = a-,(" 1 0) and WA=-p.

From the relationship A-I = (I + Vk-lWk-I ) (I + Vk-2Jk-2)... I + v 2w 2 )

A,, we derive A = (I +Vk_.UkI ) (I +Vk2k-2)... (I +V 2U 2 )A where VI is

the (k - 1) x 1 leading submatrix of vi, U1 is the 1 x (k - 1) leading submatrix of

W1 and A is the (k - 1) x (k - 1) leading submatrix of A1 .

When we compute the vector Wk, we already know the vectors w, (2 <

I < k - 1) and hence the vectors U, (2 < I < k - 1). Therefore, we can apply

Algorithm 2.3 to solve the (k - 1)-dimensional system 7rA = -p.

The maximum number of multiplications or divisions required to compute

(Wk,9k) by this method is

k2 -k + k + k-1 ; k2 +k

and the maximum number of multiplications required to factorize A is

k2 + k 3 +rL2

k= 2

This is essentially the same as the maximum number of multiplications required

to compute the triangular factorization A = LU by Gaussian elimination.
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Example:

Consider the 3x3 matrix A = 5 7j.
49 2

* We have A, 1 = 8.

* The factor E 2 = I+ v 2 t 2 is computed from W2A1  uT .

x= 5

7r(8) = (-3)

= ) "-1(- 1 *) = 3-- 1

W 2 =84 0 5(1/17
02 = 1 + -(- 40

* The factor E3 = I + v3 W3 is computed from W3 A 2 - uT.

,of = 27 6

37 407

1 _ _68 7 34 1

7F =(- =) +( [-9 =- (( )

W3 237 37 74 7 77

7 34 1 () 180

03 = 1 + ( - ) =

2.5 Simplification Applicable to Non-Spikes

We saw in Section 1.7 that ;f column I is not a spike of A, the Basic Method

does not require the computation of the auxiliary vector wt. This simplification is

not directly transferable in the Streamlined Method, because algorithms 2.2 and

2.3 appear to require the computation of all the intermediate quantities like x,

or Wt, and hence of all the vectors wt.
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However, if the spikes of A were its rightmost columns, the leading t x t

submatrix T associated with the t non-spike columns of A would be triangular.

Then. the vectors 0[1w, (1 < 1 < t) would represent the rows of T - '. Moreover,

the steps of algorithms 2.2 and 2.3 corresponding to spike columns k could be

carried out as earlier with the vectors Wak, while those corresponding to nonspike

columns 1 could be replaced by solving a system explicitly involving the triangular

matrix T instead of the vectors Waj.

In order to implement this idea when the matrix A is arbitrary, we can per-

mute the columns of A according to the permutation matrix Q that sends the

spikes of A to the right while preserving the order of the non-spikes and that of

the spikes, and permute the rows of A symmetrically, i.e. according to the per-

mutation matrix QT. Let A' = QTAQ be the resulting matrix. Let q be the

permutation of {1,2,...,m} induced by Q (i.e. Uq(k) = QTUk). Then we have

the following Lemma:

Lemma 2.5.1 Column j is a spike of A if and only if column q(j) is a spike

of A'.

Proof If column j is a spike, then 3i i < j and Aij 5 0. By construction,

if column j is a spike of A, then i < j == q(i) < q(j) . In addition,
A' - A'u = uTQ QTAQ QTuj= uTAu = Aij 0 0. Therefore,q(i0q(j) = q(i) A q(j)

column q(j) is a spike of A'.

Conversely, if column q(j) is a spike of A', then ]i q(i) < q(j)andAq(i)q(j) # 0

Either i < j or < i. In the former case, 3i i < j and Aij $ 0 . In the latter

case, column j which stood to the left of column i in A will stand to the

column i in A'. Either xay, column j must be a spike of A.

By Lemma 2.5.1, A and A' have the same number s of spikes and the same

number t = mr - s of non-spikes. Since the t leftmost columns of A' are not spikes,

the decomposition
i T i T I T E' i

A' = A'1  + v2u2  + vu3u +"+vmum =E E - EA
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satifies v = v' 3 =...v = 0 and E = E'=...= E = . In

particular, A, is triangular.

To solve Ax = b, we consider the equivalent system A'x' = b' where

_QTx and b' b. The last s components of x' are computed as in

Section 2.2 using the vectors Wk, (m > k > t), and the first t components of x'

are solved through the first t equations of the triangular system Atx' = b.

To solve 7rA = -y , we consider the equivalent system 7r'A' = -y' where

i = 2rQ and -y= yQ . The vector -'t is given by the triangular systemWtA t  ,and the last s vectors Tr'

a t st are computed as in Section 2.3 using the

vectors W' (t < k <im).
To compute the non-trivial factors E'k (t < k < rn), we decompose the system

k-1 = uT into w' = a-' (7 1 0) and 7wA = -p as shown in

Section 2.4 and solve the latter system as indicated in the previous paragraph.

That way, all computations can be carried out solely with the auxiliary quan-

tities (w',O0) (t < k < m) corresponding to spikes (v' 3 0). Because the spikes

have been shifted to the right in A', the number of nonzeros above the diagonal

in the spikes may increase. However, the number of nonzeros in the vectors Wk

remains unchanged as the following Lemma indicates:

Lemma 2.5.2 If column k is a spike of A, then w'(k) = WQ and

q(k)

Proof Let k' = q(k). We have, by definition of w',

( J, A',_ UT

and, by definition of W ,

WkAk-1 - UT

WkQ QTAk-IQ uTQ k) uT,

Partition QTAk.lQ into (X Z) where X is a k x k' submatrix. Then

Z = 0, X and T have full rank and X equals the leading k' x k' submatrix of
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A' = QTAQ. Therefore, the last m - k' components of ws, and of WkQ are

zeros while their first k' components are solutions of the same well determined
system. Thus w' WkQq(k,) :--.

Finally, since the first k' components of v'(k) and QTvk are equal, we haveq k

6 q(k) = 1 +rtq(k)V(k)

=1 + WkQkQkVk

"-1+ WkVk

- Ok

Example:

This example shows how to permute and factorize a 5 x 5 matrix whose

columns 2 and 4 are not spikes, and how to solve systems like Ax = b or rA = y.

In this case, the permutation Q will simply interchange columns 3 and 4.

0 1 0 0 01
A -1 0 1 0 1 b= ,=(1 3 3 2 3)

0 1 1 1 0
1 1 0 1 1)(J)

1 0 0 1) 6i)
0 1 0 0 01

A' 0 1 1 1 0 b= 6Y'=(1 3 2 3 3)
-2 0 0 1 1
1 1 1 0 1)8
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0 I * * E'

A'=-A'=A'= 0 1 1 *1' 0 = E '
-1 0 * 1 33 =

1 1 0 1

1110.

A' 0 1 1 1
*110

1* 0 v1

0 1 11

5 1 0 * 1I

1 1 0

The factor E4= I + Y'w! is computed from w'A' = T

(0 = (1 0)

= (1 0)

W4 = (1 0 * 1 ,)= (1 0 * 1 *)

= 1+ (1 0 * 1 2

* Thefactor E, = I+v jw is computed from wA ' u T

0 1 0•10

d! 1 1171 O701 0 * 1

W3 (-1 0 -1

24



4 = (-1 -1 *) + o - (-10 -1 )( o0

w = (0 0 -1 1)

w -1'(0 0 -1 1 1)=(0 0 -1 1 1)

5= 1 + (0 0 -1 1 1) = 2

* The vector x is computed from E' E ' A'x, = b'.

6

66() 5 = l(O 0 -1 1 1) = 4(!2) 8(!
(; ) -2(1 = ( '01) = ( 2

* The vector wr is computed from IF'E 5 E4 A = yf'.

0= (1 3 2 2

6= (1 1 2 *

25
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4 =(l 1 2 + ) 3-(1 1 2 * *)() (1 0 * 1 ,)

=(1 1 2 0 *)

; -(1 1 2 03*)-(1 1 2 0 ,)( (0 0 -1 1 1)

=(I 1 1 1 1)

r'-(11111)

7r=111
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CHAPTER 3. NUMERICAL STABILITY

3.1 Introduction

In Chapter 2, we showed how to factorize a matrix A under the assumption

that the matrices Ak (1 < k < m) were non-singular. In this Chapter, we

decompose this assumption into two conditions and show that a rescaled version

of the same factorization can be obtained under only the first condition. We

recall that if A is non-singular then its columns can be permuted so that the

resulting matrix satisfies the first condition, and indicate a procedure to carry

out simultaneously the permutation and the factorization. This procedure offers

a numerical stability similar to that of LU decomposition with partial pivoting.

3.2 Definitions and Notation

A unit upper triangular matrix is an upper triangular matrix whose entries

on the diagonal are equal to one.

Let A be a square matrix. Let B be a square submatrik of A. We define the

minor of A associated with B as the determinant of B. A leading minor of A is

a minor associated with a leading submatrix of A.

Let A,v and w be respectively an m x n, an m x 1 and a 1 x n matrix. Then,

for k < m and k < n, (A)k, (V)k and (W)k denote respectively the k x k leading

submatrix of A, the k x 1 leading submatrix of v and the 1 x k leading submatrix

of w. Unless indicated otherwise, Ak, VA and Uk are abbreviations for (Ak)k,

(vk)k and (Wk)k.

3.3 Conditions on the Matrices Ak (1 < k < m)

In Chapter 2, we assumed that the matrices Ak (1 < k < m) were non-
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singular. Because of their structure, we have

detAk = detik JJ All = detAk (Al),,.
I=k+l m=k+l

Therefore, the matrices Ak (1 < k < m) are non-singular if and only if the

matrices Ak (1 < k < m) and the matrix A, are non-singular.

It is well known that if A is non-singular, then its columns can be permuted

according to a permutation matrix Q such that the leading square submatrices of

AQ are non-singular. Actually, the columns of A can be selected step by step: at

step k, a column is chosen for kth position so as to maximize the absolute value of

the resulting kth leading minor. In practice, this procedure yields well conditioned

leading submatrices, as observed in the LU decomposition algorithm with column

interchanges. Therefore, we shall follow a similar procedure.

Regarding the non-singularity of (AQ)1 , i.e. the absence of zeros on the

diagonal of AQ, we shall see in Section 3.6 that the issue is rendered moot by

rescaling the vectors representing the factorization.

3.4 LU Decomposition with Column Interchanges

In this Section, we recall some useful properties of the LU decomposition of

square matrices (Murty, 1976).

Lemma 3.4.1 For any m x m matrix A, there exist a lower triangular

matrix L, m - 1 transposition matrices Tk (1 < k < m) and m - 1 unit upper

triangular matrices Uk (1 < k < m) such that

L = ATiUiT 2U 2 ... Tmi-Um-..

Proof (and algorithm 3.4) Let A (° ) = A. Given A(k - ), let ]k satisfy

A(k-, = maxk<_m 1A(k- 1 )

If A('-') = 0, A(k - 1) is singular. Let Tk Uk I.

Otherwise, interchange columns k and jk, i.e. postmultiply A(k- 1) by the

transposition matrix Tkj (abbreviated to Tk) derived from the identity matrix
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by interchanging columns k and Jk. Then zero out the entries of row k to the right

of column k by adding appropriate multiples of column k to columns k + 1,..., m,

i.e. postmultiply A(k- 1 )Tk,j, by a unit upper triangular matrix Uk with the

appropriate entries in row k.

In either case, we have

A(k) = A(k-')TkUk for 1 < k < m - 1

where the strictly upper triangular part of A(k) has zero entries in its k first rows.

After m - 1 iterations, we obtain A(m- ) = A(°)T 1U 1T 2 U 2 ... Tm-IU,-I

where A(m-l) is lower triangular.

Lemma 3.4.2 For 0 _< k < m - 1, let A(k) = AT1 U 1 T 2U 2 ... TkUk

be the kth iterate in the LU decomposition of A. Then A(k) - AT 1 T 2 ... T Ul,

where U' is a unit upper triangular matrix whose last m - k rows equal those

of the identity matrix.

Proof (by induction) A ( ' ) = AL. Assume that

A(k - 1) = ATT2 ... Tk-IU'k_ where U'-1 = (Vk -1 ,k-)

Then
U _iTk = (V . (i

=( )(V lS)

=TkV k-I

and
A(k) = A(k- )TkUk

= AT1 T 2 ... T-_iU'_iTkUk

= AT 1 T 2 ... TkITkVkIUk

= ATIT 2 ... TkITkUk

29



where V~, Uk and U- = k are unit upper triangular matrices whose last

m - k rows equal those of the identity matrix.

Corollary 3.4.3 There exists a lower triangular matrix L, a unit upper tri-

angular matrix U and a permutation matrix Q such that LU = AQ.

Corollary 3.4.4 For 1 < 1 < k, the t h leading minor of A(k) and that of

ATIT 2 ... Tk are equal:

det(A(k)), = det(ATjT 2 ... Tk)l.

Corollary 3.4.5 If A is non-singular, the first k leading minors of the

product AT, T 2 ... Tk are nonzero:

det (AT 1T 2 ... Tk) = det (AMk))i
- A ( k) ... A(k)

1,1 " 2,2 " ' ,

A( 1 ) A(m- 1 ) ... A(m1).
-- ' , " 2,2 " ' il

Corollary 3.4.6 If A is non-singular, the kth pivot is the ratio of the kh

leading minor over the (k - 1)" leading minor of AT1 T 2 ... Tk:

A(k) det (A(k))t det (AT1 T 2 ... Tk)k

Ak,k det(A(k))l det(ATT 2 ... Tk)k-I

Therefore, in terms of the matrix AT 1 T 2 ... Tk, the following column selec-

tion rules are equivalent:

(1) given the first k - 1 columns, select the kth column so as to maximize the

absolute value of the resulting k"h pivot.

(2) given the first k - 1 columns, select the kth column so as to maximize the

absolute value of the resulting kt leading minor.
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3.5 An Alternate Computation of the Pivots

In this Section, we show how to compute the potential pivots through some

auxiliary vectors 'k (1 < k < m), without explicitly carrying out any LU decom-

position.

Lemma 3.5.1 Let A be a non-singular m x m matrix. Let Ok (1 < k < m)

be the sequence of pivots generated by the LU decomposition of A as described

in Section 3.4. Let Q = TIT 2 ... Tm-i be the permutation matrix resulting

from the same LU decomposition. Let A' = AQ. Let " k- 1 ak wherea\ Pk a~k),
is a scalar, represent the k x k leading submatrix of ATIT 2 ... Tk, and hence the

k x k leading submatrix of A'. Let K = {1... k}.

Then, for 1 < k < m, the m-vector 'k P (_pkXk-I 1 0) is well

defined and the pivot Al is given by the scalar product Ok = 0 k A'Kk.

Proof By Corollary 3.4.5, Atk- 1 is non-singular and by Corollary 3.4.6,

we have

det (Ak.. ak
de = ( Pk Qak/

det A'k- I

- -1 
a

= ckk - Pkk-'kl

= -k'-("ki--(-k k-I 1) ak)

= 0 k AK k.

Note that for 1 < k < m, Ok # 0 because A is non-singular (cf. Corollary

3.4.3).

The algebraic relationships mentioned in Section 3.4 hold independently of

the pivot selection rule. Therefore, at step k, all potential pivots can be computed

as products of the form Fkc where c is one of the unselected columns of AK-, i.e.

one of the m - k + 1 rightmost columns of A' .. In other words, the potential

pivots are the m - k + 1 rightmost elements of the vector A = 'kA' - where

R{k...m}.
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3.6 Factorization with Column Interchanges

If A is non-singular, the column interchange method described above provides

a permutation matrix Q = TIT 2 ... Tm such that A' AQ has nonzero leading

principal minors. The following theorem explains why the factorization and the

column permutation can be carried out simultaneously.

Theorem 3.6.1 Let A be a non-singular m x m matrix. Let Q, A' and

(Ork, Ok) (1 < k < m) be as defined in Lemma 3.5.1. Let ak (1 < k < m) denote

the diagonal elements of A'. If, for 1 < k < m, ak # 0, then A' can be factorized

as described in Chapter 2. and the sequence (Wk,Ok) (2 < k < m) resulting from

this factorization satisfies

Wk = Olklffk and Ok = a #k for 2 < k <m.

Proof The matrix A'_ 1 is non-singular and we have

O'kA'-.l = (-p0 ) 0) = (00) = T

Therefore fkA' = akWkAk I and Wk = ak fTk. Finally, w- have

dt (X'k-l ak

det det Pk
Ok =det Ek= ( -) - -kt k 3

det Ak 1  det (Ak.1 0 1k a

k Pk Ckk)

Since ofk can be regarded as the value that tak would take if ak were equal to

one, it can be computed at least as easily as wk. As a matter of fact, the method

used in Section 2.4 to compute Wk entails the computation of o0 - (7 1 0)

where -Xk.- = -Pk is solved by Algorithm 2.3.

In addition, Theorem 3.6.1 implies that, for 2 < k < m, 0-1 = #-'f.

Therefore, in Algorithms 2.2 and 2.3, the sequence (ofk,k) (2 < k < m) can

replace the sequence (Wk, 9k) (2 < k _< m) which need not be computed.
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Finally, if A is non-singular then the sequence (17k, k) (1 < k < m) is well

defined whereas the existence of (Wk, 9) (2 < k < m) also depends on whether

the coefficients ak are different from zero.

All these considerations lead us to redefine the factorization of A' in terms of

the sequence (ts,, 3 k) (1 < k < m). Using the notation of Section 3.5, we end up

with the following method.

Algorithm 3.6 (to generate Q and factorize A' = AQ)

Let A' = A.

For k = 1 to m, do the following:

" Solve 7rWAk-1 = -Pk.

" Let 17k = (7r 1 0).

" Compute the vector of potential pivots A = ekA'K.

* Select a pivot column jk such that --\kj maxk<j<m I ,j.

" Let A' A'Tk,jk.

" Let 3k = Aj.

* If 3 k = 0 then stop (A is singular).

Example: Consider the 3 x 3 matrix introduced in Section 1.2:

A = 5 7.
492

e Step 1 Column 1 has the entry of largest absolute value in row 1. There-

fore, column 1 remains in first position.

' = (1 •*)

,A = (1) (8 1 6) = (8 1 6)

= 8

* Step 2 We compute the vector f"2 :

62 0) = (0 1)
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i2 = (ir 1 ,) where 7r (8) (-3)

02= 1

The potential pivots are given by

(5 7 8 8

We select 2 - 9- from column 3 which moves into second position.

e Step 3 We compute the vector &"3:8 00
(73 7 0 ) (0 0 1)

(42 1)

0"3=(Ir 1) where " 3 ) = (-4 -2)

2= (- *) + -2 -(_ ,)(6)] 4(- 1) = (-fl 40"3 --- ( 3 1

W2 +1 2 1)

ff3 ~19 1

The only remaining pivot is given by

A , ( II 4_

= - 1 ) 1 8 0
19 19 1) \~ 19

-3 180

* Summary

1 ~ 8 16) (1 0 0) (8 61)A'=AQ= 3 5 7)0 0 = 3 75

(4 9 2J01 0 4 29
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A3 7 ) =(1 * 8
2 94

2 95(W ) 19 1)19

3.7 Rescaling of the Matrix A

To reduce the number of divisions during the factorization of a matrix, it may

be worthwhile to rescale the columns of the matrix so that the resulting pivots

i3 k (1 < k < m) are equal to one. For this rescaling to speed up the factorization,

the number nz of nonzero elements off the diagonal must be less than the number

of divisions by k :

m

nz < Z(m - k) = m(m 1)

k=1 
2

Therefore, the density of the matrix must be less than . This procedure does not

affect the number of divisions involved in solving the system Ax = b for instance,

because of the unscaling of x.

Example:

Consider the 3 x 3 matrix introduced in Section 1.2 A = 3 5 7
(4 9 2

After the example of Section 3.6, it is easy to see that the matrix

8 16 ) 1 0 O 0 12- 9-
A"=AQS= 3 5 7 0 0 1 19 / 0

1 80 29 19 2049 2 0 1 0 0 0
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has all its pivots equal to one.

1 * ,*2=

A_= 19 1' (= ( .

'. . .. ~8 19 v3 -
2 19 24

36

T-9 r II



CHAPTER 4. SPIKE REDUCTION

4.1 Introduction

The method presented in Section 2.5 to factorize a matrix A and to solve a

system Ax = b or 7rA = -y will work better if the nrmber of auxiliary vecors wk

(or O4k) is smaller, and, given their number, if their size is smaller.

The most obvious way to achieve these goals is to reduce the number of spikes

of the matrix A and, whenever possible, to shift those spikes towards the left. To

that end, we describe three myopic algorithms, inspired by Hellerman and Rarick's

P 3 procedure (Hellerman and Rarick, 1972), that reorder the matrix by selecting

some rows and columns, assigning them a position, deleting them and repeating

the process on the resulting submatrix until all rows or all columns have been

assigned.

4.2 Definitions and Notation

Let i and 3 denote a row and a column index of A. If Aij 0 0, we say that row

i "intersects" column j, that column j "intersects" row i or that row i and column

j "intersect". We define the following:

ROWSPAN(i) the set of columns j intersecting row i.

COLSPAN(j) the set of rows i intersecting column j.

ROWCOUNT(i) the number of nonzero entries in row i.

COLCOUNTO) the number of nonzero entries in column j.

ROWTALLY(i) the number of nonzero entries in the columns intersecting row i.

COLTALLY(j) the number of nonzero entries in the rows intersecting column j.
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ROWSPAN(i) =j : Aij 0 0}

COLSPAN(j) = {i: A i  O}

ROWCOUNT(i) = IROWSPAN(i)I

COLCOUNT(j) = ICOLSPAN(j)l

ROWTALLY(i) E COLCOUNT(j)

j:Aq $0

COLTALLY(j) - ROWCOUNT(i)
i:Aij 0

A line of a matrix A is a row or a column of A. At iteration k, the "active

submatrix" is the submatrix obtained after deletion of the lines selected during

iterations 1,..., k - 1.

4.3 Top-Left Spike Reduction Algorithm

This algorithm essentially keeps selecting from the active submatrix a row to

be placed at the top of the unassigned rows and a matching column to be placed

to the left of the unassigned columns. This amounts to identifying the coefficient

of the active submatrix to be placed in the top-left corner.

More precisely, at iteration k, a row with the fewest nonzero entries is se-

lected from the active submatrix and assigned position k (the highest available).

If some columns of the active submatrix intersect that row, one of them is as-

signed position k (the leftmost available) and the others are sent to a spike-index

queue. Otherwise, a column is removed from the spike-index queue according to

the First-In-First-Out (FIFO) priority rule and assigned the position k. Finally,

the active submatrix is updated by deletion of the selected row and of the columns

intersecting it.

Termination occurs when all columns have been deleted. Then the undeleted

rows are assigned the bottom positions, the columns remaining in the spike-index

queue are removed in FIFO order and assigned the rightmost positions. Under

this algorithm, deletion of all rows cannot occur before deletion of all columns.
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In addition, note that the spikes added to the queue during iteration k will

have zero entries above row k and a nonzero entry in row k of the current matrix,

and that the only unassigned columns with nonzero elements above row k are

already in the spike queue. Therefore, if no column intersects the selected row

and no spike is available in the queue at iteration k, then the first k rows of

the reordered matrix contain only k - 1 nonzero columns and the matrix A is

structurally singular (i.e. singular for any values given to the nonzero coefficients).

Finally, the FIFO priority rule used in removing the indices from the spike-

index queue produces spikes in order of non-increasing heights, which prevents

the structural singularity of the leading submatrices, unless the whole matrix A

is itself structurally singular.

The Top-Left spike reduction algorithm is listed below:

Let k = 0.

Repeat

Let k = k + 1;

TOPLEFT(k);

until all columns are deleted.

Assign undeleted rows positions {k + 1 ... m}.

Remove columns remaining in spike-index queue (FIFO).

Assign these columns positions {k + 1 ... m}.

The procedure TOPLEFT(k) consists of the following instructions:

* Select from the active submatrix a row ik minimizing ROWCOUNT(i). Break

ties by maximizing ROWTALLY(i).

* Assign row 4k position k.

* If ROWCOUNT(i,) # 0, then

select a pivot column jk from the columns intersecting row ik;

assign column jk position k;

add the other columns intersecting row ik to the spike-index queue.
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" If ROWCOUNT(t) = 0, then

remove the FIFO column from the spike queue and assign it position k.

* Delete row ik and the columns intersecting row it.

4.4 Bottom-Right Spike Reduction Algorithm

Instead of building the new matrix from the t.op-left corner to the bottom-

right one, the second algorithm does it in reverse direction, skipping some spaces

for the spikes. It essentially keeps selecting from the active submatrix a column to

be placed to the right of the unassigned columns and a matching row to be placed

at the bottom of the unassigned rows. This amounts to identifying the coefficient

of the active submatrix to be placed in the bottom-right corner.

At each iteration, a column with the fewest nonzero entries is selected from

the active submatrix. If some rows of the submatrix intersect that column, they

are assigned the positions at the bottom of the submatrix, the selected column

is assigned the rightmost position p allowing it to fit on and below the diagonal,

and the unassigned positions to the right of p are sent to a spike-position queue.

Otherwise, a position is removed from the spike-position queue according to the

First-In-First-Out (FIFO) priority rule and the selected column is assigned that

position. Finally, the active submatrix is updated by deletion of the selected

column and of the rows intersecting it.

Termination occurs when all rows have been deleted. Then the undeleted

columns are assigned the positions remaining in the spike-position queue. Note

that, under this algorithm, deletion of all columns cannot occur before deletion of

all rows.

If no row intersects the selected column and no spike-position is available in

the queue at iteration k, then some I columns of A contain at most I - I nonzero

rows and the matrix A is structurally singular.

The Bottom-Right algorithm obtains the spikes in order of non-decreasing

heights, but it allocates them from right to left. However, the Bottom-Right
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algorithm, listed below, usually yields fewer spikes than the Top-Left algorithm:

Let k = m + 1.

Let pk = M + 1.

Repeat

Let k = k - 1;

BOTTOMRIGHT(k);

until all rows are deleted.

Assign the undeleted columns the spike-positions remaining in queue.

The procedure BOTTOMRIGHT(k) consists of the following instructions:

e Select from the active submatrix a column J1, minimizing COLCOUNT(j); break

eventual tie by maximizing COLTALLY(j).

* Update the rightmost non-spike position Pk = Pk+1 - COLCOUNTO).

* If COLCOUNT(j&) # 0, then

assign column 3k position Pk;

select a pivot row from the rows intersecting column j,;

assign the pivot row position pk;

assign the other rows intersecting column jk the positions in the range

Pk + 1...pk+i - 1;

add Pk +,... ,Pk+l - 1 to the spike-position queue.

* If COLCOUNT(j,) = 0, then

remove the FIFO position q from the spike-position queue;

assign column j, position q.

" Delete column j k and the rows intersecting column )k.

4.5 Composite Spike Reduction Algorithm

The third algorithm is a combination of the first two. At odd iterations, it

selects and deletes a column and the rows intersecting it (using the procedure

BOTTOMRIGHT). At even iterations, it selects and deletes a row and the columns

intersecting it (using the procedure TOPLEFT).
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Termination occurs when all rows have been deleted. Then, the undeleted

columns are added to the spike-index queue. Finally the columns remaining in the

spike-index queue are matched with the positions remaining in the spike-position

queue.

Empirically, this algorithm appears to combine the speed of the first one (i.e.

it requires a small number of iterations) and the efficiency of the second one (i.e.

it yields a small number of spikes).

The composite spike reduction algorithm is listed below:

Let k=m+l.

Let Pk = m + 1.

Let k' = 0.

Repeat

If not all columns are deleted then

Let k = k - 1;

BOTTOMRIGHT(k).

If not all rows are deleted then

Let k' = k'+ 1;

TOPLEFT(k').

until all rows are deleted.

Add undeleted columns to the spike-index queue.

Match remaining spike-indices and remaining spike-positions.

4.6 Examples

In this paragraph, we apply the three algorithms described above to an 8 x 8

matrix. Although the numerical values of the nonzero coefficients are not needed,

they are represented for the sake of consistency with the example used in Chapter

4. SI queue and SP queue denote the spike-index queue and the spike-position

queue respectively. The columns belonging to the SI queue are printed in italic.
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4.6.1 First algorithm:

1 2 3 4 5 6 7 8 count tally

1 8.00 9.00 5.00 1.00 -7.00 5
2 3.00 8.00 2.00 3
3 6.00 4.00 2
4 -3.00 5.00 -9.00 2.00 4
5 4.00 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 6.00 -4.00 5
8 5.00 2.00 3.00 3

count 2 5 3 5 3 3 3 4

Matrix 0

Iteration 1

Row 3 is selected and assigned position 1.

Columns 4 and 5 are selected.

Column 4 is assigned position 1 and column 5 is sent to the SI queue.

4 1 2 3 6 7 8 5 count tally

3 6.00 4.00
1 1.00 8.00 9.00 5.00 -7.00 4
2 3.00 8.00 2.00 3
4 -9.00 -3.00 5.00 2.00 3
5 3.00 4.00 -7.00 2 8
6 5.00 -1.00 -2.00 2 6
7 5.00 2.00 6.00 -4.00 -8.00 3
8 5.00 2.00 3.00 3

count 2 5 3 3 3 4

Matrix la

Iteration 2

Row 5 is selected and assigned position 2.

Columns 2 and 3 are selected.
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Column 3 is assigned position 2 and column 2 joins column 5 in the SI queue.

4 3 I 6 7 8 5 2 count tal ly

3 6.00 4.00
5 3.00 -7.00 4.00

11.00 5.00 8.00 -7.00 900 2
2 8.00 2.0.0 1- 3.00 2
4 -9.00 -3.00 2.00 5.00 2
6 5.00 -1.00 [-2.00 2
7 5.00 2.00 6.00 -4.00 8.00 3
8 2.001 3.00 5.00 1

count 2 3 3 4

Matrix 2a

Iteration 3

Row 8 is selected and assigned position 3.

Column 8 is selected and assigned position 3.

4 3 8 1 6 7 5 2 count tally

3 6.00 4.00
5 3.00 -7.00 4.00
8 2.00 3.00 5.00
1 1.00 5.00 -7.00 8.00 1 9.00 1
2 8.00 2.00 3.00 2
4 -9.00 2.00 -3.00 5.00 1
6 5.00 -1.00-2.00 2
7 5.00 -4.001 2.00 6.00 8.00 2

count 2 3 3

Matrix 3a

Iteration 4

Row 1 is selected and assigned position 4.

Column 1 is selected and assigned position 4.
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4 3 8 I 6 7 5 2 count tally

3 6.00 4.00
5 3.00 -7.00 400
8 200 3.00 5.00
1 1.00 5.00 -7.00 8.00 9.00
2 8.00 270 3.00 2
4 -9.00 2.00 -3.00 5.00 0
6 5.00 -. 00-2.00 2
7 5.00 -4.00 2.00 6.00-8.00 2

count 3 3

Matrix 4a

Iteration 5

Row 4 is selected and assigned position 5.

Column 5 is removed from the bottom of the SI queue and assigned position 5.

4 3 8 1 5 6 7 2 count tally

3 6.00 4.00
5 3.00 -7.00 4.00
8 2.00 3.00 5.00
1 1.00 5.00 -7.00 8.00 9.00
4 -9.00 2.00 -3.00 5.00
2 8.00 2.00 300 2 6
6 -2.00 5.00 -1.00 2 6
7 5.00 -4.00 -8.001 2.00 6.001 2 6

count 3 3

Matrix 5a

Iteration 6

Row 2 is selected and assigned position 6.

Columns 6 and 7 are selected.

Column 6 is assigned position 6 and column 7 joins column 2 in the SI queue.
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4 3 8 I 5 6 2 7 count tally

3 6.00 4.00
5 3.00 -7.00 4.00
8 2.00 3.00 5.00
1 1.00 5.00 -7.00 8.00 9.00
4 -9,00 2.00 -3.00 5.00
2 8.00 3.00 200
6 -2.00 5.001 -1.00 0
7 5.00 -4.00 -8.00 2.001 6.00 0

count

Matrix 6a

After 6 iterations, all columns have been deleted. The remaining rows 6 and 7

are assigned the remaining positions 7 and 8, as are the columns 2 and 7 left in the

SI queue. The final matrix has three spikes, namely columns 5, 2 and 7 in positions

5, 7 and 8 respectively. By interchanging columns 5 and 7, we would obtain only

two spikes but the resulting 5 x 5 leading submatrix would be structurally singular.

The FIFO rule prevents such occurences when the whole matrix is non-singular.

4.6.2 Second algorithm:

1 2 3 4 5 6 7 8 count

1 8.00 9.00 5.00 1.00 -7.00 5
2 3.00 8.00 2.00 3
3 6.00 4.00 2
4 -3.00 5.00 -9.00 2.00 4
5 4.00 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 6.00 -4.0 5
8 5.00 2.00 3.00 3

count 2 5 3 5 3 3 3 4
tally

Matrix 0

Iteration 1

Column 1 is selected and assigned position p = 9 - 2 = 7.
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Rows 1 and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.

2 3 4 5 6 7 I 8 count

2 3.00 800 2.00 3
3 600 400 2
5 400 -700 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 6.00- 5
a 5.00 200 3
1 9.00 500 1.00 8.00 -7.00
4 5 00 -9.00 -3.00 2.00

count 3 2 3 3 3 3 2
tally 6 8

Matrix lb

Iteration 2

Column 8 is selected and assigned position p = 7 - 2 = 5.

Rows 7 and 8 axe selected and assigned positions 5 and 6.

Position 6 joins 8 in the SP queue.

2 3 4 5 8 7 I 6 count

2 3.00 200 8.00 3
3 6.00 4.00 2
5 4.00-7.00 3.00 3
6 -2.00 -. o00 5.00 3
7 5.00 -8.00 -4.00 6.00 2.00
8 5.00 2.00 3.00
1 9.00 5.00 1.00 -7.00 8.00

•4 5.00 -9.00 2.00 -3.00

count 2 1 2 2 2 2
tally

Matrix 2b

Iteration 3

Column 3 is selected and assigned position p = 5 - 1 = 4.

Row 5 is selected and assigned position 4.
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2 4 5 3 8 7 I 6 count

3 6.00 4.00 2
6 -J,001 3
5 4,00 3.00 -7.00
7 5.00 -8.00 -4.00 6.00 2.00
8 5.00 2.00 3.00
I 9.00 1.00 5.00 -7.00 8.00
4 5.00 -9.00 2.00 -3.00

count 1 1 2 2 2
tally 3 2

Matrix 3b

Iteration 4

Column 2 is selected and assigned position p = 4 - 1 = 3.

Row 2 is selected and assigned position 3.

4 5 2 3 8 7 1 6 count

3 2
6

2 3.00 2.00 800
5 3.00 4.00 -7.00
7 5.00 -8.00 -4.00 6.00 2.00
8 5.00 2.00 3.00
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count 1 2 I I
tally 2 3 3

Matrix 4b

Iteration 5

Column 6 is selected and assigned position p = 3 - 1 = 2.

Row 6 is selected and assigned position 2.
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4 6 2 3 7 count

3 4= 0 2
6 5.00 -2.00 -1.00
2 8.00 3.00 2.00
5 3 00 4.00 -7.00
7 5.00 2.00 -4.00 -8.00 3 00
8 5.00 2 00 3.00
1 1.00 9.00 5.00 -7.00 8.00
4 -9 00 5.00 2.00 -3.00

count I 1 0
tally

Matrix 5b

Iteration 6

Column 7 is selected and assigned position q = 8.

Position 8 is removed from the SP queue.

4 6 2 3 8 5 1 7 count

3 4 2
6 5.00 -2.00 -1.00
2 8.00 3.00 2.00
5 3.00 4.00 -7.00
7 5.00 2.00 -4.00 -8.00 6.00
8 5.00 200 300
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count I I
tally 2 2

Matrix 6b

Iteration 7

Column 4 is select-d and assigned position p = 2 - 1 = 1.

Row 3 is selected and assigned position 1.
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4 6 2 3 8 5 I 7 count

3 6.00 4.00
6 5.00 -2.00 -1.00
2 8.00 3.00 2.00
5 3.00 4.00 -7.00
7 5.00 2.00 -4.00 -8.00 6.00
8 5.00 2.00 3.00
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count 0
tally

Matrix 7b

After 7 iterations, all rows have been deleted. The remaining column 5 is

matched with the position remaining in the SP queue. The final matrix has only

two spikes, namely columns 5 and 7, in positions 6 and 8 respectively.

4.6.3 Third algorithm:

1 2 3 4 5 6 7 8 count tal ly

1 8.00 9.00 5.00 1.00 -7.00 5
2 3.00 8.00 2.00 3
3 6.00 4.00 2
4 -3.00 5.00 -9.00 2.00 4
5 4.00 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 6.00 -4.00 5
8 5.00 2.00 3.001 3

count 2 5 3 5 3 3 3 4
tally

Matrix 0

Iteration 1

Column I is selected and assigned position p = 9 - 2 = 7.

Rows 1 and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.
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2 3 4 5 6 7 1 8 count tally

2 3.00 8.00 2.00 m 3
3 6.00 4.00 2
5 4.00 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 600 -4.00 5
8 500 2 00 3
1 9.00 5.00 1.00 8.00 -7.00
4 5.00 -9.00 -3.00 2.00

count 3 2 3 3 3 3 2
tally

Matrix cl

Iteration 2

Row 3 is selected and assigned position 1.

Columns 4 and 5 are selected.

Column 4 is assigned position 1 and column 5 sent to the SI queue.

4 2 3 6 7 8 1 5 count tally

3 6.00 4.00
2 3.00 8.00 2.00 3
5 3.00 4.00 -700 2
6 5.00 -1.00 -2.00 2
7 5.00 2.00 6.00 -4.00 -8.00 3
8 5.00 2.00 3.00 3
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count 3 2 3 3 2
tally 5 6

Matrix c2

Iteration 3

Column 8 is selected and assigned position p = 7 - 2 = 5.

Rows 7 and 8 are selected and assigned positions 5 and 6.

Position 6 is sent to the SP queue.
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4 2 3 6 8 7 1 5 count tally

3 6.00 4.00
23.00 8.00 3
5 3.00 400-700 2 3
6 5.001 -200 2 4
7 5.00 2.00 -4.00 6.00 -8.00
8 5.00 2.00 3.00
I 1 .00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count 2 1 2 2
tally

Matrix c3

Iteration 4

Row 6 is selected and assigned position 2.

Columns 6 and 7 are selected.

Column 6 is assigned position 2 and column 7 is added to the SI queue.

4 6 2 3 8 5 1 7 count tally

3 6.00 4.00
6 5.00 -2.00 -1.00
2 8.0013.00 I 2.00 I

5 3.00 4.00-7.00 2
7 5.00 2.00 -4.00-8.00 6.00
8 5.00 2.00 3.00
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count 2 1
tally

Matrix c4

Iteration 5

Column 3 is selected and assigned position p = 5 - 1 = 4.

Row 5 is selected and assigned position 4.
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4 6 2 3 8 5 1 7 count tal ly

3 6.00 4.00
6 5.00 -2,00 -100
2 8.00r 3.00 2.00
5 3.00 4.00 -7.00
7 5.00 2,00 -4.00-800 6.00
8 5.00 2.00 3.00
1I 00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count
tally

Matrix c5

Iteration 6

Row 2 is selected and assigned position 3.

Column 2 is selected and assigned position 3.

4 6 2 3 8 5 1 7 count tally

3 6.00 4.00
6 5.00 -2.00 -01 0
2 8.00 3.00 2.00
5 3.00 4.00 -7.00
7 5.00 2.00 -4.00-8 00 6.00
8 5.00 2.00 3.00
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00

count
tally

Matrix :6

After 6 iterations, all rows and all columns have been deleted. By matching

the spike-index queue {5,7} with the spike-position queue {8,6} in reverse order,

we obtain the same final matrix as with the second algorithm. The two spikes,

columns 5 and 7, are in positions 6 and 8 respectively. In this particular example,

the third algorithm takes as few iterations as the first one and yields as few spikes

as the second one.

53



CHAPTER 5. FACTORIZATION ALGORITHM

5.1 Introduction

The spike reduction algorithms described in Chapter 4 do not take into con-

sideration the numerical values of the nonzero coefficients of the matrix A. There-

fore, they are unlikely to produce a matrix whose direct factorization would be

stable. On the other hand, the factorization with column interchanges described

in Chapter 3 would result in too many spikes and too much computation if it were

applied to the original matrix A.

The algorithm described in this chapter attempts to create a sparse and stable

factorization by combining the ideas described in the previous three chapters. It

consists of three phases: prescaling, preordering and factorization.

The prescaling phase is a simple column scaling. The preordering phase is

based on the composite spike minimization algorithm of Section 4.5. The factor-

ization phase, which also includes some reordering and rescaling, is a restricted-

pivoting version of the factorization with column interchanges described in Section

3.6.

5.2 Notation

We use the definitions and notation of Section 4.2. In addition, we introduce

a pivot tolerance r and the following quantities:

ROWPIVOT(i) = max IAkI
k

COLPIVOT(3 ) = max IAkj I
k

ROWSCORE() ROWPIVOT( ROWTALLY(i) if ROWPIVOT(i) > 7
W 0 otherwise

A f COLPIVOT(j) X COLTALLY(j) if COLPIVOT(j) > 7
COLSCORE(j) =- 0 otherwise

Thus, if a row i satisfies ROWSCORE(i) = 0, it contains no entry that can be accepted

as a pivot.
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5.3 Prescaling Phase

To render meaningful any row or column selection based on the size of the

coefficients within a column or a row of A, these coefficients of A must have been

prescaled. Here, we assume a columnwise matrix representation and we choose to

scale the columns of A. For instance, we can divide each column by a coefficient

of largest absolute value in that column. The resulting columns are unit vectors

for the II I norm.

5.4 Preordering Phase

The preordering is aimed at reducing the number and size of the spikes and,

hence, of the factors. It uses the composite spike reduction algorithm of Section

4.5 with three modifications.

The first modification concerns row or column selection. The selected rows

and columns that do not contain a suitable pivot (i.e. an entry whose absolute

value is greater than r) are rejected. When a column has been selected and

several rows are available to be assigned the pivot position, the row containing

the entry of largest absolute value in that column inside the active submatrix is

chosen as pivot row, unless that entry remains too small to be used as a pivot in

which case the selected column becomes a spike. Similarly, when a row has been

selected and several columns are available to be assigned the pivot position, the

column containing the entry of largest absolute value in that row inside the active

submatrix is chosen as pivot column, unless that entry remains too small to be

used as a pivot in which case the pivot position is sent to the spike-position queue

and all the columns intersecting the selected row are sent to the spike-index queue.

The second modification concerns the tiebreaking function TALLY(0 that is

replaced by the "multiobjective" function SCOREO to take into account both the

pivot size and the number of nonzero entries to be deleted.

Finally, the third modification concerns the ordering of the spikes. Spikes are

still given in order of nonincreasing height, but their final order is to be determined
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in the factorization phase. Therefore, spike-indices and spike-positions are only

added to, but not removed from their respective queues.

5.5 Factorization Phase

The preordering phase induces a partition of the columns into spikes and

non-spikes. The factorization phase preserves the ordering of the rows and that

of the non-spikes but permutes the spikes according to the pivot-maximizing rule

introduced in Section 3.6.

For all spike-positions k in increasing order (i.e. from left to right), it com-

putes a vector ak and the potential pivots associated with the available spikes,

selects a pivot of largest absolute value and matches the corresponding spike-index

with the spike-position k. If no suitable pivot can be obtained from the spike-index

queue, the matrix is deemed singular and the algorithm stops.

In addition, each time a spike has been assigned a position, it may be rescaled

so that the resulting pivot takes the value 1. This step is not recommended for

dense matrices (cf. Section 3.7).

5.6 Factorization Algorithm

AU the procedures mentioned above, including the column rescaling, are con-

tained in the following algorithm:
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Normalize the columns of A.

Let k = m + 1.

Let Pj = m + 1.

Let k' = 0.

Repeat

If not all columns are deleted then

Let k = k - 1;

BOTTOMRIGHT(k).

If not all rows are deleted then

Let k' = k' + 1;

TOPLEFT(k').

until all rows are deleted.

Add undeleted columns to the spike-index queue.

MATCHQUEUES.

The procedure BOTTOMRIGHT(k) becomes:

e Select from the active submatrix a column jk minimizing COLCOUNTr(); break

eventual tie by maximizing COLSCORE(j).

* Update the rightmost non-spike position pk = Pk+I - COLCOUNT(j).

* If COLSCORE(jk) 7 0, then

assign column jk position Pk;

select a pivot row from the rows intersecting column jk;

assign the pivot row position pk;

assign the other rows intersecting column jk the positions in the range

pk + 1,...,pk,+l - 1;

add the positions Pk + 1 ... Pk+1 - 1 to the spike-position queue;

rescale the pivot column so that the resulting pivot equals 1.

* If COLSCORE(ih) = 0, then

add column ik to the spike-index queue.

" Delete column ik and the rows intersecting column )k.
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The procedure TOPLEFT(k) becomes:

" Select from the active submatrix a row iZ minimizing ROWCOUNT(i) ; break

eventual tie by maximizing ROWSCORE(i).

" Assign row ik position k.

" If ROWSCORE(i,) : 0, then

select a pivot column jk from the columns intersecting row ik;

assign column jk position k;

add the other columns intersecting row ik to the spike-index queue.

" If ROWSCORE(ik) = 0 then

add position k to spike-position queue;

add all columns intersecting row ik to spike-index queue.

" Delete row ik and the columns intersecting row ik.

The procedure MATCHQUEUES stands for:

" While spike-position queue 9 0,

remove leftmost position k from spike-position queue;

compute Uk;

compute the potential pivots associated with the columns of the spike-

index queue;

select pivot 3& and pivot-maximizing column 1;

if I/NI < e, then STOP (A is singular);

assign I position k and remove I from spike-index queue;

rescale the pivot column so that the resulting pivot equals 1.

5.7 Example:

In this Section, we apply the sparse factorization algorithm described above

to the 8 x 8 matrix introduced in chapter 4. The pivot tolerance r is set to 0.50.

The numerical values of the matrix and of its factors are given with a precision of
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10-2. Phases 1, 2 and 3 correspond to prescaling, preordering and factorization

with restricted pivoting respectively. SI queue and SP queue denote the spike-

index queue and the spike-position queue respectively. The columns belonging to

the SI queue are printed in italic.

1 2 3 4 5 6 7 8 count score

1 8.00 9.00 5.00 1.00 -7.00 5
2 3.00 8.00 2.00 3
3 6.00 4.00 2
4 -3.00 5.00 -9.00 2.00 4

5 4.00 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 2.00 6.00 -4.00 5
8 5.00 2.00 3.00 3

count 2 5 3 5 3 3 3 4
score

scale I 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Matrix 0

Phase 1

The columns of the matrix are prescaled.

1 2 3 4 5 6 7 8 count score

1 1.00 1.00 -0.71 -0.1 1 1.00 5
2 0.33 1.00 0.33 3
3 -0.67 -0.50 2

4 -0.38 0.56 1.00 -0.29 4
5 0.44 1.00 -0.33 3

6 0.25 0.63 -0.17 3
7 -0.56 1.00 0.25 1.00 0.57 5
8 0.56 -0-29 -0.43 3

count 2 5 3 5 3 3 3 4
score

scale 8.00 9.00 -7.00 -9.00 -8.00 8.00 6.00 -7.00

Matrix ld

Phase 2 BOTTOMRIGHT1

Column 1 is selected and assigned position p = 9 - 2 = 7.
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Rows 1 (pivot row) and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.

2 3 4 5 6 7 I 8 count score

2 0.33 1.00 0.33 m 3
3 -0.67 -0.50 2
5 0.44 1.00 -0.33 3
6 0.25 0.63 -0.17 3
7 -0.56 1.00 0.25 1.00 057 5
8 0.56 -0.29 -043 3
I 1.00 -0.71 -0.11 1.00 1.00
4 0.56 1.00 -0.38 -0.29

count 3 1 3 3 3 3 2
score

scale 9.00 -7.00 -9.00 -8.00 8.00 6.00 8.00 -7.00

Matrix 2d

Phase 2 TOPLEFT1

Row 3 is selected and assigned position 1.

Columns 4 and 5 are selected.

Column 4 (pivot column) is assigned position 1.

Column 5 is sent to the SI queue.

Column 4 is rescaled so that the pivot equals 1.

4 2 3 6 7 8 1 5 count score

3 1.00 -0.50
2 0.33 1.00 0.33 3
5 0.50 0.44 1.00 2
6 0.63 -0.17 025 2
7 0.83 0.25 1.00 0.57 1.00 3
8 0.56 -0.29 -0.43 3
1 0.17 1.00 -0.71 1.00 1.00
4 -1.50 0.56 -0.29 -0.38

count 3 2 3 3 2
score 5.00 3.43

scale 6.00 9.00 -7.00 8.00 6.00 -7.00 8.00 -8.00

Matrix 3d

Phase 2 BOTTOMRIGHT2
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Column 3 is selected and assigned position p = 7 - 2 = 5.

Rows 5 (pivot row) and 8 are selected and assigned positions 5 and 6.

Position 6 is sent to the SP queue.

4 2 6 7 3 8 1 5 count score

3 1.00 -0.50
2 0.33 .00 0.33 3
6 0.63-0.17 0.25 2
7 0.831 0.25 1.00 1.00 3
5 0.50 0.44 1.00
8 0.56 -0.29 -0.43
1 0.17 1.00 -0.71 1.00 1.00
4 -1.50 0.56 -0.29 -0.38

count 1 3 3

score

scale 6.00 9.00 8.00 6.00 -7.00 -7.00 8.00 -8.00

Matrix 4d

Phase 2 TOPLEFT2

Row 6 is selected and assigned position 2.

Columns 6 and 7 are selected.

Column 6 (pivot column) is assigned position 2.

Column 7 is sent to the SI queue.

Column 6 is rescaled so that the pivot equals 1.

4 6 2 a 3 7 1 5 count score

3 1.00 -0.50
6 1.00 -0, 17 0.25
2 1.60 0.33 0.33 1
7 0.83 0.40 0.7 .00 1.00 1
5 0.50 0.44 I .00
8 0.56 -0.43 -0.29
I 0.17 1.00 1.00 -0.71 1.00
4 -1.50 0.56 -0.29 -0.38

count I I
score 0.33 0.57

scale 6.00 5.00 9.00 -7.00 -7.00 6.00 8.00 -8.00

Matrix 5d
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Phase 2 BOTTOMRIGHT3

Column 8 is selected and assigned position p = 5 - 1 = 4.

Row 7 (pivot row) is selected and assigned position 5.

Column 8 is rescaled so that the pivot equals 1.

4 6 2 8 3 7 I 5 count score

3 1.00 -0.50
6 1.00 -0.17 025
2 1.60 0.33 0
7 0.83 0,40 1.00 100 1.00
5 0.50 0.44 1.00
8 0.56 -0.75 -0.29
1 0.17 1.00 1.75 -0.71 1.00
4 -1.50 0.56 -0.50 -0.38

count
score

scale 6.00 5.00 9.00 -4.00 -7.00 6.00 8.00 -8.00

Matrix 6d

Phase 2 TOPLEFT3

Row 2 is selected and rejected because 10.331 < 7%

Position 3 is sent to the SP queue.

Column 2 is sent to the SI queue.

Phase 3 Computation of 73

We remove the leftmost position, namely 3, from the spike-position queue. Then

we have to solve the system W3 A1 = U3, or rather

/100
73 1.00 ) = (0 0 1).

1.60 1.00

The solution, 73 = (0.00 -1.60 1.00), can be used to compute the pivots that

would result from assigning columns 2, 7 and 5 position 3

( -0.50)
(0.00 -1.60 1.00) -0.17 0.25 = (0.33 0.60 -0.40).

k0.33 0.33
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Selecting column 7 yields the pivot of largest absolute value. Therefore, we remove

column 7 from the spike-index queue and assigned it position 3. Then we rescale

column 7 by 0.60 so that the resulting pivot equals 1.

4 6 7 8 3 2 I 5

3 100 -0.50
6 1 00 -0 28 025
2 1.60 056 0 33
7 083 0.40 1.67 1.00 100
5 050 1.00 044
8 -0.75 -0.29 056
I 0.17 1.75 -0.71 1.00 1.00
4 -1.50 -0.50 056 -0.38

scale 6.00 5.00 3.60 -4.00 -7.00 900 8.00 -8.00

omega 0.00 -1.60 1.00
beta 0.60 0.33 0.40

Matrix 7d

Phase 3 Computation of e6

We remove the leftmost position, 6, from the spike-position queue. Then we have

to solve the system Lw6 E 3AI = uT3, or rather

1.00
1.00 -0.28

1.60 0.56

0.50 1.00

-0.75 -0.29 1.00

The solution, 6 = (-0.77 1.83 -1.33 0.75 0.29 1.00), can be used to

compute the pivots that would result from assigning columns 5 and 2 position 6:

(-0.500.25

(-0.77 1.83 -1.33 0.75 0.29 1.00) 1.00 .33 1.59 0.24).
1.0 0.44

0.56/

Column 5 provides the pivot of largest absolute value. Therefore, we remove

column 5 from spike-index queue and assign it position 6. Then we rescale it by
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1.59 so that the resulting pivot equals 1.

4 6 7 8 3 5 1 2

3 1.00 -0.31
6 1.00 -0.28 0.16
2 1.60 0.56 0. ,1
7 0.83 0.40 1.67 1.00 0.63
5 0.50 1.00 044
8 -0.75 -0.29 0.56
1 0.17 1.75 -0.71 1.00 1.00
4 -1.50 -0.50 -0.38 0.56

scale 6.00 5.0( 3.60 -4.00 -7.00 -12.7 8.00 9,00

omega -0.77 1.8 -1.33 0.75 0.29 1.00
beta 1.59 024

Matrix 8d

Phase 3 Computation of Ts

We match the remaining spike-index 2 and spike-position 8. However, we must

still solve wSE 6 E 3 A1 = u3 or equivalently

1.00 -0.31
1.00 -0.28 0.16
1.60 0.56

0.83 0.40 1.67 1.00 0.63
0.50 1.00

-0.75 -0.29
0.17 1.75 -0.71 1.00

-1.50 -0.50 -0.38 1.00

=(0 0 0 0 0 0 0 1).

The solutionisis = (0.97 0.73 -0.53 0.30 0.44 0.61 0.38 1.00)

and the pivot resulting from placing column 2 in position 8 is given by

0.33

(0.97 0.73 -0.53 0.30 0.44 0.61 0.38 1.00) 0.44 = 1.29.

0.56
1.00
0.56
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Therefore, we rescale column 2 by 1.29 so that the pivot equals 1.

4 6 7 8 3 5 1 2

3 100 -031
6 1.00 -0.28 0.16
2 1.60 0.56 0.20
7 0.83 0.40 1.67 1.00 0.63
5 0.50 1.00 0.35
8 -0.75 -0.29 0.43
1 0.17 1.75 -0.71 1.00 0.78
4 - 1.50 -0.50 -0.38 0.43

scale 6.00 5.00 3.60 -4.00 -7.00 -12.7 8.00 11.58

omega 0.97 0.73 -0.53 0.30 0.44 0.61 0.38 1.00
beta 1.29

Matrix 9d

The final matrix has three spikes, namely columns 7, 5 and 2, in positions 3,

6 and 8 respectively. Its factorization is given by the three vectors

a;3 =(0.00 -1.60 1.00)

F6 = (-0.77 1.83 -1.33 0.75 0.29 1.00)

8 = (0.97 0.73 -0.53 0.30 0.44 0.61 0.38 1.00).

5.8 Block Triangular Reduction

Dulmage and Mendelsohn (1963) have indicated a procedure to permute the

rows and the columns of a matrix so that the resulting matrix is lower triangular

by blocks.

First, find a transversal, i.e. a permutation of the columns with matrix rep-

resentation Q such that the diagonal of the resulting matrix AQ has no zero

entry.

Then identify the resulting matrix AQ with its canonically associated directed

graph (the nodes are the indices {1,... ,m } and the arcs are the pairs (i,J) such

that A,,j $ 0).
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Finally determine the strongly connected components of the graph (cf. Tarjan,

1972), regroup the nodes of the same components into supernodes and consider

the resulting collapsed graph: since it does not contain any cycle, the supernodes

can be reordered so that if arc I --+ J exists then I > J. List the nodes from the

first supernode, then those from the second one, and so on that list defines a row

permutation matrix P. The matrix PAQPT is lower triangular by blocks.

Once the blocks have been identified, they can be reordered so as to minimize

the number of spikes within the block and systems can be solved block by block.

This reduces the size of the blocks to be reordered and the length of the auxiliary

vectors Wk or 0fk.

Example:

x xix i
X X X X, X X X X
xxxxx x x XXXIXX XXXX XXX X XX X

X X X X X X X X X X x
X X X X X X X X1 X X X X X X X
X X X X X X X X X, X X X X X X X XX
X X X X X X X X- X X X X X X X X X1 X,X XXXX X XXX XX XXXXX X Xx

X X X XX X X X X X X XX X X XXX1

On the 10 x 10 matrix shown above, factorizing the diagonal blocks instead

of the whole matrix reduces the number of nonzero components for the auxiliary

vectors Wk or ffk from 25 to 17.
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CHAPTER 6. APPLICATION TO THE SIMPLEX ALGORITHM

6.1 Introduction

In order to test our factorization method, we have implemented it within the

framework of the simplex algorithm for linear programming (Dantzig, 1963). As

a reference code, we have chosen the FORTRAN optimization code MINOS 5.3

(Murtagh and Saunders, 1987) whose modularity, robustness and performance on

large-scale problems make it an ideal benchmark.

in MINOS 5.3, the factorization of the basis, the update of the basis and the

solution of linear systems involving the basis are carried out by a set of FORTRAN

subroutines constituting the file MI25BFAC. We have written a file of FORTRAN

subroutines, called MI26BFAC, designed to perform the same tasks using our

method. We have run MINOS 5.3 alternatively with the original file MI25BFAC

and with the new file MI26BFAC on different test-problems under different options.

6.2 The File MI26BFAC

The file MI26BFAC is designed to perform the same tasks as MI25BFAC

when used within MINOS 5.3 to solve linear programming problems. The major

implementation differences are the following. First, our factorization is inherently

different from the LU factorization. Second, we compute a block-triangularization

of the basis and then perform the factorization only on the diagonal blocks. Third,

we use a conventional product-form update (with an in-core "i7-file").

The principal subroutines of MI26BFAC, written in FORTRAN77, are repre-

sented hierarchically in Chart 6.2. Their names and their roles are listed below:

M2BFAC: Performs the factorization of the basic matrix B by calling M2BELM,

M2BMAP, M2BSOL and M2SING.

M2BELM: Extracts a sequence of triplets representing the matrix B from the data.

POINTR: Converts the representation of B from a sequence of triplets to sparse

column format with an array of coefficient values, an array of row indices
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and an array of column pointers.

M2BMAP: Allocates storage for most of the arrays used in the factorization and

updating of B.

M2BSOL: Performs one of the following actions according to the value of the pa-

rameter "mode":

factorize B by calling POINTR, TRIANG and TRTBLK;

solve BH1 ... HpPx = b by calling SOLVEM, PERMCP and UPDATE;

solve 7rBH1 ... Hp = yP - 1 by calling SOLVEN, PERMCP and UPDATE;

add an element Hq to the n-file by calling ADDETA.

M2SING: Replaces one column of B by an appropriate slack column when the

original matrix results in too small a pivot during factorization. It may

be called several times in a row.

TRIANG: Identifies the lower block triangular representation of B by calling TRANSV

and GETBLK.

TRTBLK: Extracts, prescales, preorders and factorizes each diagonal block of B by

calling EXTRCT, RESCAL, PREORD and FACTOR.

SOLVEM: Solves Bx = b with the help of SOLVEA.

SOLVEN: Solves w'B = y with the help of SOLVEB.

PERMCP: Permutes a vector according to P or P'.

UPDATE: Performs rank-one updates according to the 7t-file.

ADDETA: Adds a column-vector characterizing a factor Hq to the v7-file.

TRANSV: Computes a transversal of B.

GETBILK: Computes the diagonal blocks of B.

EXTRCT: 1. .-ntifies the elements from a diagonal block of B with the help of SELECT.

SELECT: Scans the columns that support a diagonal block to identify the entries

that belong to that block.

RESCAL: Normalizes the columns of each block.

PREORD: Applies a spike reduction algorithm to preorder the blocks by calling

SETLST, COLCAN, BOTRIG, ROWCAN, TOPLEF, PRUNE and GATHER.
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F ACTOR: Factorizes the blocks by calling SOLVEB and ADDSPK. Sorts the column

representation of B according to the final row order.

SETLST: Sets up a row-wise linked list representing a diagonal block and some

auxiliary variables for preordering.

COLCAN: Finds column candidates to be used by BOTRIG.

BOTRIG: Performs a BottomRight iteration.

R0WCAN: Finds row candidates to be used by TOPLEF.

TOPLEF: Performs a TopLeft iteration.

PRUNE : Performs the deletion of entries in row-wise linked lists.

GATHER: Gathers and orders all spikes in order of non-increasing height.

SOLVEA: Solves B'x' = b' where B' is a sub-block of B.

SOLVEB: Solves r'B' = y' where B' is a sub-block of B.

ADDSPK: Adds one auxiliary vector O'k to the factor list.

6.3 Test Implementation

We have run MINOS 5.3 on a SUN 3/50 workstation using a 16 Mhz Motorola

68020 CPU under the SunOS 3.5 operating system and with the Berkeley f77

compiler.

We have chosen a set of 53 test-problems studied by Lustig (1987) and made

publicly available on netlib (Dongarra and Grosse, 1987) by Gay (1985). Although

the original MINOS code could run all these test-problems without modification,

our implementation required too much storage. Therefore, we have increased

the size of the array Z from 100000 to 120000 for SHIP12L and to 150000 for

PILOTJA and decided to forego the last two problems 80BAU3B and PILOT

because it was apparent from running the other test-problems that our method

would be unpractical and widely outperformed by MINOS.

With each of the 51 other test-problems, we have made two experiments, each

based on a different MINOS option file.
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6.4 First Experiment

The first experiment is the straightforward solve of each linear program from

scratch in order to compare overall performance. The option file is the following:

ROWS 1500

COLUMNS 5500

ELEMENTS 22000

MPS FILE 10

NEW BASIS FILE 12

SAVE FREQUENCY 10000

ITERATION LIMIT 20000

PRINT LEVEL 0

SOLUTION NO

SCALE OPTION 2

PARTIAL PRICE 10

FACTOR FREQUENCY 25

LU FACTOR TOLERANCE 100.0

LU UPDATE TOLERANCE 10.0

In Table 6.4.1, we have listed for each test-problem the number of iterations

l in phase 1, the total number of iterations k, and the execution time tv, under

both versions (v = 0 for MI25BFAC and v = 1 for MI26BFAC), as well as the

ratio of execution times tl/to. In 19 cases, our implementation runs faster than

MINOS, which is hampered by the factorization frequency of 25.

In Table 6.4.2, we have listed for each test-problem the optimal objective

value z , under both versions (v = 0 for MI25BFAC and v = 1 for MI26BFAC),

as well as their relative difference. In 44 instances, the optimal objective values

agree up to 11 significant digits. The largest discrepancy occurs with PILOTWE

where the agreement is still of 6 significant digits. This seems to indicate that our

method achieves a satisfactory numerical stability.
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TABLE 6.4.1 I1 10 k kO ti to ti/to

AFIRO 3 3 7 7 1.94 1.84 1.05
ADUTTLE 23 23 117 117 8.00 7.18 1.11
SC205 0 0 145 145 35.58 17.84 1.99
SCAGR7 79 79 99 99 11.50 10.14 1.13
SHARE2B 67 67 110 110 10.52 9.48 1.11
RECIPE 7 7 33 33 5.88 6.30 0.93
VTPBASE 33 33 48 48 10.10 9.72 1.04
SHAREIB 135 135 261 261 27.86 23.56 1.18
BORE3D 114 114 160 160 27.38 25.46 1.08
SCFICN 63 63 102 102 23.40 24.88 0.94
CAPRI 164 164 251 251 41.32 37.72 1.10
SCAGR25 169 172 353 376 81.88 86.00 0.95
SCTAPI 195 195 287 287 46.78 47.72 0.98
BRANDY 269 269 423 423 80.42 65.66 1.22
ISRAEL 44 44 250 250 49.28 37.18 1.33
ETAMACRO 313 302 649 574 129.30 109.30 1.18
SCFXM1 222 222 389 389 70.54 68.98 1.02
GROW 0 0 232 232 54.86 49.82 1.10
BANDM 225 225 498 498 114.10 101.06 1.13
E226 111 111 480 467 81.60 67.76 1.20
STANDATA 40 40 114 111 31.00 31.10 1.00
SCSDI 92 92 368 370 40.88 :7.68 1.08
GFRDPNC 291 283 615 637 143.02 7.26 0.86
BEACONED 39 39 104 87 25.62 22.82 1.12
STAIR 334 334 449 449 385.68 197.58 1.95
SCRS8 63 63 692 645 176.42 161.68 1.09
SEBA 225 225 399 399 112.00 106.14 1.06
SHELL 60 60 274 274 73.26 82.02 0.89
PILOT4 445 445 1599 1467 1278.24 550.82 2.32
SCFXM 538 538 819 819 259.50 270.40 0.96
SCSD6 206 206 1139 1139 172.96 148.24 1.17
GROWl5 0 0 485 485 226.32 196.24 1.15
SHIP04S 13 13 158 159 47.12 54.42 0.87
FFFFF800 883 806 1074 1002 292.22 284.08 1.03

412 410 700 705 333.02 354.66 0.94
SCFXM3 828 854 1349 1391 577.54 660.18 0.87
SCTAP2 362 373 766 744 319.02 346.84 0.92
GROW 0 0 736 662 571.92 369.46 1.55
SHIP04L 1 3 1 3 275 276 77.60 88.86 0.87
PILOTWE 380 492 4474 4040 7900.80 1938.60 4.08
SIERRA 470 452 1083 1071 438.18 511.84 0.86
SHIP08S 17 17 262 262 106.68 130.24 0.82
SCTAP3 492 425 926 883 488.96 546.74 0.89
SHIP12S 39 39 434 434 196.14 273.56 0.72
25FV47 2046 2304 7821 7828 10704.38 4524.18 2.37
SCSD8 767 711 3102 3914 1383.04 1245.60 1.11
NESM 1176 1251 3270 3399 1357.34 1189.00 1.14
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TABLE 6.4.2 z1 z0 Zl-zO/zO

AFRO -4.6475314286e+02 -4.6475314286e+02 0.00e+00
ADLITrLE 2.25494963169+05 2.2549496316e+05 0.00e+00
SC205 -5.2202061212e+01 -5.2202061212e+01 0.00e+00
SQG7 -2.331 3892548e+06 -2.3313892548e+06 0.00e+00
SHARE2B -4.1 573224074e+02 -4.1 573224074e+02 0.00e+00
RECIPE -2.6661600000e+02 -2.6661600000e+02 0.00e+00
VTPBASE 1.2983146246e+05 1.2983146246e+05 0.00e+00
SHAREIB -7.6589318579e+04 -7.6589318579e+04 0.00e+00
BORE3D 1.3730803942e+03 1.3730803942e+03 0.00e+00

1.8781248227e+03 1.8781248227e+03 0.008+00
CAPRI 2.6900129138e+03 2.6900129138e+03 0.00e+00
SCAG- 2 -1.47534330619+07 -1.4753433061e+07 0.00e+00
SCTAP1 1.4122500000e+03 1.4122500000e+03 0.00e+00
BRANDY 1.5185098965e+03 1.5185098965e+03 0.00e+00
ISRAEL -8.9664482186e+05 -8.9664482186e+05 0.00e+00
ETAKVPqD -7.5571521819e+02 -7.5571521831e+02 -1.59e-10
SCFXM1 1.8416759028e+04 1.8416759028e+04 0.00e+00
GROW -4.7787811815e+07 -4.7787811815e+07 0.00e+00
BANDM -1.5862801845e+02 -1.58628018459+02 0.00e+00
E226 -1.8751929066e+01 -1.8751929066e+01 0.00e+00
STANDATA 1.2576995000e+03 1.2576995000e+03 0.00e+00
SCSD1 8.6666666743e+00 8.6666666743e+00 0.00e+00
GFRDPNC 6.9022359995e+06 6.9022359995e+06 0.00e+00
BEACCND 3.3592485807e+04 3.3592485807e+04 0.00e+00
STAIR -2.5126695119e+02 -2.5126695119e+02 0.00e+00
SCRS8 9.0429998619e+02 9.0429998619e+02 0.00e+00
SEBA 1.5711600000e+04 1.5711600000e+04 0.00e+00
SHELL 1.2088253460e+0g 1.2088253460e+09 0.00e+00
PILOT4 -2.5811392641e+03 -2.5811392641e+03 0.00e+00
SCFXM2 3.6660261565e+04 3.6660261565e+04 0.00e+00
SCSD6 5.0500000078e+01 5.0500000078e+01 0.00e+00
GROWl5 -1.0687094129e+08 -1.0687094129e+08 0.00e+00
SHIP04S 1.7987147004e+06 1.7987147004e+06 0.00e+00
FFFFF800 5.5567961219e+05 5.5567959103e+05 3.81e-08

___ -1.0958634770e+05 -1.0958635225e+05 -4.15e-08
SCFXM3 5.4901254550e+04 5.4901254550e+04 0.00e+00
SCTAP2 1.7248071429e+03 1.72480714299+03 0.00e+00
GROW22 1.6083433648e+08 1.6083433648e+08 0.00e+00
SHIP04L 1.7933245380e+06 1.7933245380e+06 0.00e+00
PILOTWE -2.7200991196e+06 -2.7201034525e+06 -1.59e-06
SERA 1.5394362184e+07 1.5394362184e+07 0.00e+00
SHIP08S 1.9200982105e+06 1.9200982105e+06 0.00e+00
SCTAP3 1.4240000000e+03 1.4240000000e+03 0.00e+00
SHIP2S 1.4892361344e+06 1.4892361344e+06 0.00e+00
25FV47 5.5018467791e+03 5.5018458883e+03 1.62e-07
SCSD8 9.0499999993e+02 9.0499999993e+02 0.00e+00
NESM 1.4076073324e+07 1.40760751289+07 -1.28e-07

______ 2.1851966989e+06 2.1851966989e+06 0.00e+00
PILOTJA -6.1131152948e+03 -6.1131157775e+03 -7.90e-08
SHIPO8L 1.9090552114e+06 1.90905521149+06 0.00e+00
SHIP12L 1.4701879193e+06 1.4701879193e+06 0.00e+00
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6.5 Second Experiment

The second experiment is designed to focus on the factorization size. As initial

basis, we use the optimal basis obtained during the first experiment under MINOS

with MI25BFAC. The objective function is now maximized instead of minimized

and the iteration limit is set to 25. The option file is the following:

ROWS 1500

COLUMNS 5500

ELEMENTS 22000

MAXIMIZE

MPS FILE 10

OLD BASIS FILE 12

NEW BASIS FILE 0

SAVE FREQUENCY 10000

ITERATION LIMIT 25

PRINT LEVEL 1

SOLUTION NO

SCALE OPTION 2

PARTIAL PRICE 10

FACTOR FREQUENCY 100

LU FACTOR TOLERANCE 100.0

LU UPDATE TOLERANCE 10.0

Not surprisingly, some of the test-runs end with an unbounded solution. In

four other instances, MINOS lists some variables as apt to increase indefinitely.

These occurences are indicated respectively by a U and an I in the first column of

Table 6.5.1.

Table 6.5.1 also contains the number of iterations k up to which both methods

yield the same basic solution, and the total number of iterations k'. For each test-

problem, that number, usually the iteration limit of 25, turns out to be the same

under both versions.

Finally, Table 6.5.1 provides the size a of the largest diagonal block, the
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TABLE 6.5.1 k k' a ti fO fl/fO ti to ti/tO

AFIRO 81 8 4 0.04 0.04 1.00 1.70 1.98 0.86
ADLITTLE 251 25 13 0.06 0.14 0.43 4.32 4.22 1.02
SC205 201 25 184 0.78 0.62 1.26 11.06 7.38 1.50

R7 251 25 0 0.04 0.18 0.22 5.72 5.50 1.04
SHARE2B 251 25 10 0.10 0.24 0.42 5.70 5.34 1.07
RECPE 141 25 0 0.02 0.18 0.11 5.40 6.32 0.85
VTPBASE U 221 22 31 0.10 0.36 0.28 7.88 7.84 1.01
SHAFE1B 251 25 10 0.10 0.34 0.29 7.62 7.50 1.02
BORE3D U 241 24 44 0.22 0.54 0.41 11.52 11.26 1.02
SCO4'M 1 251 25 14 0.32 1.00 0.32 12.28 12.96 0.95
CAPRI 2 425 44 0.24 0.70 0.34 13.22 11.90 1.11
SCAGR25 25 25 54 0.28 0.92 0.30 16.14 15.30 1.05
SCTAPI 25 25 6 0.14 0.50 0.28 13.28 12.86 1.03
BRANDY 25 25 90 0.60 0.90 0.67 14.52 13.12 1.11
ISRAEL U 0 0 54 0.22 0.601 0.37 8.94 9.24 0.97
ETAMK4CRO 25 25 50 0.28 0.92 0.30 17.52 17.50 1.00
SCFXM1 25 25 13 0.24 0.80 0.30 15.60 15.42 1.01
GIOW7 25 25 115 1.40 1.46 0.96 18.04 15.44 1.17
BANDM 25 25 83 0.58 1.22 0.48 17.34 16.80 1.06
E226 1 25 25 62 0.28 0.72 0.39 14.28 13.20 1.08
STANDATA U 0 0 2 0.12 0.46 0.26 17.16 17.28 0.99
SCSD1 25 25 14 0.08 0.22 0.36 15.00 14.66 1.02
GFFUPNC 25 25 0 0.12 1.04 0.12 25.66 26.40 0.97
BEACCNFD U 1 1 2 0.08 0.38 0.21 12.06 12.06 1.00
STAIR 25 25 324 12.36 4.50 2.75 47.60 27.48 1.73
SCRS8 25 25 23 0.34 1.02 0.33 23.74 23.78 1.00
SEBA 25 251 0 0.14 1.26 0.11 27.54 27.06 1.02
SHELL I 25 25 0 0.26 0.90 0.29 30.00 30.28 0.99
PILOT4 25 25 279 9.42 1.95 4.83 49.58 32.92 1.51
SCF-X2 25 25 25 0.58 1.80 0.32 32.10 33.08 0.97
SCSD6 24 25 30 0.18 0.42 0.43 25.00 25.18 0.99
GROW15 25 25 791 2.10 3.90 0.54 32.44 33.16 0.98
SHIP04S I 25 251 41 0.16 1.10 0.15 25-52 26.68 0.96
FFFFF800 25 25 27 0.32 1.24 0.26 32.04 31.28 1.02

24 25 32 0.98 3.72 0.26 45.10 44.70 1.01
SCFXW 25 25 25 0.86 2.92 0.29 45.58 47.38 0.96
SCTAP2 0 25 5 0.38 2.02 0.19 45.04 46.96 0.96
GROW22 1 0 25 119 4.08 6.02 0.68 47.18 45.82 1.03
SHIP04L I 25 25 0 0.18 0.68 0.26 33.50 35.88 0.93
PILOTWE 1 25 25519 15.70 4.3 3.65 87.64 58.70 1.49
SIERA ! 25 25 0 0.22 2.02 0.11 61.34 62.80 0.98
SHIP08S U 18 18 8 0.24 2.26 0.11 40.44 42.90 0.94
SCTAP3 I 2 25 12 0.40 2.94 0.14 58.28 59.80 0.97
SHIP12S U 1 1 5 0.36 3.76 0.10 42.14 45.92 0.92
25FV47 25 253651 6.82 4.44 1.54 73.02 54.72 1.33
SCSD8 23 25 209 1.14 1.52 0.75 52.32 51.30 1.02
NESM 25 25 179 1.08 1.88 0.571 75.24 73.22 1.03
CZ_____ 25 25 6 0.30 3.56 0.08 63.02 66.50 0.95
PILOTJA 25 25 544 25.86 5.96 4.34 120.98 70.98 1.70
SHIP08L 25 251 8 0.24 2.42 0.10 66.36 68.80 0.96
SHIP12L U 1 251 51 0.30 3.56 0.08 72.54 76.08 0.95
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TABLE 6.5.2 a w A+w A+w+x I u I+u 1'+u* sl/sO s1/s*0

AFR:O 72 3 74 150 23 51 74 95 1.00 1.58
ADLITTLE 251 31 261 1029 103 162 265 466 0.98 2.21
SC205 543 991 1493 4837 296 514 810 1045 1.84 4.63
SCAMR7 477 0 477 1787 0 477 477 826 1.00 2.16
SHARE2B 522 52 529 1509 116 444 560 707 0.94 2.13
FECIPE 271 0 271 375 0 271 271 266 1.00 1.41
VTPBASE 637 49 673 1896 96 546 642 606 1.05 3.13
SHARE1B 586 72 599 2060 223 424 647 846 0.93 2.43
BORE3D 1053 67 1084 2505 270 818 1088 1505 1.00 1.66
SOOFP_ 1680 248 1750 2864 369 1383 1752 2160 1.00 1.33
CAPRI 1193 127 1291 3562 250 992 1242 1234 1.04 2.89
SCAGR25 1644 72 1706 5512 192 1497 1689 2240 1.01 2.46
SCTAPI 950 18 954 1876 200 752 952 1113 1.00 1.69
BRANDY 1320 896 2057 4577 691 844 1535 1949 1.34 2.35
ISRAEL I..
ETAMAO 1321 135 1433 4153 253 1149 1402 1571 1.02 2.64
SCFXM1 1321 66 1347 3148 302 1065 1367 1594 0.99 1.97
GFC _ 1751 1983 3089 6080 1025 1200 2225 3010 1.39 2.02
BANDM 1997 631 2527 6624 874 1364 2238 2846 1.13 2.33
E226 1313 292 1540 3424 551 883 1434 1662 1.07 2.06
STANDATA . . . . . . . .
SCSD1 289 32 306 1389 108 229 337 639 0.91 2.17
GPNC 1815 0 1815 2714 0 1815 18152112 1.00 1.29
BEACND 1275 1 1275 * 2 1273 1275 * 1.00 "
STAIR 3588 10960 13539 21917 2467 2896 5363 7436 2.52 2.95
S(PM 1536 73 1578 4974 214 1409 1623 2040 0.97 2.44
SEBA 2790 0 2790 4433 0 2790 2790 3014 1.00 1.47
SHELL 1493 0 1493 1894 0 1493 1493 1636 1.00 1.16
PILOT4 3298 1032 12480120107 1941 23954336 5518 2.88 3.64
SCFXM2 2698 173 2792 3554 677 2131 280813109 0.99 1.14
SCSD6 532 75 588 2080 163 454 617 910 0.95 2.29
GROW15 4216 2742 5237 7173 2421 2837,5258 6137 1.00 1.17
SHIP04S 1411 2 1412 1697 320 1093 1413 1493 1.00 1.14
FFFFF800 2708 32 2725 4287 376 2340 2716 2895 1.00 1.48
G_____ 5614 395 5662 8583 672 4965 5637 5636 1.00 1.52
SCFXM3 4089 291 4259 7314 1082 3197 4279 4605 1.00 1.59
SCTAP2 3083 16 3086 3491 100 2982 308213331 1.00 1.05
GRW22 6344 4327 7972 10957 38134043 785618727 1.01 1.26
SHIP04L 1409 0 1409 1678 0 1409 1409 1221 1.00 1.37
PILOTWE 3068 18634 21331 34526 2187 2576 4763 5783 4.48 5.97
SIERA 2968 0 2968 3420 0 2968 2968 3011 1.00 1.14
SHIPOSS 2787 7 2791 3009 501 2290 2791 2870 1.00 1.05
SCTAP3 4164 16 4170 4662 175 398741624331 1.00 1.08
SHIP12S 4111 3 4111 • 8673244 4111 * 1.00 •

25FV47 4670 10465 14666 27457 2295 3706 6001 6650 2.44 4.13
SCSO8 1546 992 2475 6443 521 1356 1877 2256 1.32 2.86
NESM 2225 986 3034 9927 395 2073 2468 2728 1.23 3.64

______ 3595 5 3598 4157 887 2712 3599 3759 1.00 1.11
PLOTJA 5206 27209 31151 48335 34673859 7326 9084 4.25 5.32
SHIPOSL 2790 7 2795 31 490 2304 2794 2874 1.00 1.10
SHIP12L 4111 31 4111 86324111 1.001
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factorization times f,. under both versions (v = 0 for MI25BFAC and v = 1 for

NII26BFAC), as well as their ratio f,/fo, and the total running time t, under both

versions 0' 0 for MI25BFAC and v = 1 for MI26BFAC), as well as their ratio

t I/to. Our method outperforms MINOS in 44 of the factorization times but only

in 21 of the total execution times.

In addition to the auxiliary vectors Wk (or O'k), our factorization requires the

storage of some elements of the original basis. The only elements of the basis that

need not be stored are located in the lower triangular part of the diagonal blocks.

More precisely. the first k elements of the rows of index k where column k is a

spike are not needed (once the vector Wk has been computed). We denote by a

the number of nonzero elements in the original basis, by h- the number of these

noiizero elements that can be viewed as part of the factorization, by w the number

of inoinzer(o elements in the auxiliary vectors Wk, by x the number of elements stored

in the i-ile. Thus the amount of storage required by our method is s1 = h+u, for

the original basis and j = Ar-u/ + x for the kth basis.

Finally, we denote by l,u and l',u' the sizes of the LU factors computed by

MINOS for the first and kth basis respectively. The amount of storage required

by NIINOS is s( = I + u for the original basis and s = ' + u' for the k'h basis.

In Table 6.5.2, we have listed the values of a and w, the sizes sl and s, of

the factorizations under MI26BFAC, the values I and u, the sizes so and so of the

factorizations under MI25BFAC, as well as the ratios slio and sll/'s. In test-

)roblems where unboundedness has been detected, some factorizations have not

e,,.in carried ouit, rendering some of the above values unavailable. These instances

are illdicatcd by a *.

In ternis of sptrsity, our miethod performs as well as or slightly better than

IIN()S in :32 instances of direct factorizations. However it performs uniformly

w,,r.(1 a ftf.r 25 cl1iii upldat es.
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6.6 Conclusion

The testing experiment of Section 6.4 indicates that our factorization method

is numerically stable in practically all instances.

The testing experiment of Section 6.5 demonstrates that our factorization

method is more efficient when the diagonal blocks computed during the block-

trianguiarization are small, say of order 50 or less. This can be attributed to the

following points:

" The identification of the diagonal blocks resulting from the block-triangular-

ization is efficient.

" Only the diagonal blocks are factored.

" A sorting of the rows that speeds up the reordering of each block is imple-

mented along with the factorization.

On the other hand, the same experiment shows that, when the block-triangul-

arization yields a large diagonal block, the size of our factorization becomes pro-

hibitively large and renders the whole method inefficient. In practically all in-

stances the numerical stability remains satisfactory.

Unfortunately, there does not seem to exist an efficient updating algorithm for

the block-triangularization of a matrix. Because our method only factorizes the

diagonal blocks, this makes a conventional product-form updating almost manda-

tory. This method of updating appears less efficient than the Bartels-Golub up-

dating of the LU factors implemented in MINOS 5.3.

In spite of these drawbacks, we hope that future computer architectures and

numerical software will suggest more applications for all or part of our factorization

method.
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